2025年九年级中考数学三轮冲刺训练压轴题训练新定义训练(含答案)


2025年九年级中考数学三轮冲刺训练压轴题训练新定义训练
一、选择题
1.定义运算:a b=(a+2b)(a﹣b),例如4 3=(4+2×3)(4﹣3),则函数y=(x+1) 2的最小值为(  )
A.﹣21 B.﹣9 C.﹣7 D.﹣5
2.规定:对于任意实数a、b、c,有【a,b】★c=ac+b,其中等式右面是通常的乘法和加法运算,如【2,3】★1=2×1+3=5.若关于x的方程【x,x+1】★(mx)=0有两个不相等的实数根,则m的取值范围为(  )
A.m B.m C.m且m≠0 D.m且m≠0
3.对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围(  )
A.k B.k
C.k且k≠0 D.k且k≠0
4.函数y=[x]叫做高斯函数,其中x为任意实数,[x]表示不超过x的最大整数.定义{x}=x﹣[x],则下列说法正确的个数为(  )
①[﹣4.1]=﹣4;
②{3.5}=0.5;
③高斯函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2;
④函数y={x}中,当2.5<x≤3.5时,0≤y<1.
A.0 B.1 C.2 D.3
5.设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”.则下列结论:
①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;
②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;
③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;
④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.
其中,正确的有(  )
A.②③ B.①④ C.①③ D.②④
6.已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是(  )
A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1
C.y1和y2=﹣x﹣1 D.y1和y2=﹣x+1
7.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为(  )
A. B.1 C. D.
8.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是(  )
A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤0
二、填空题
9.定义新运算:a b例如:﹣2 4=(﹣2)2﹣4=0,2 3=﹣2+3=1.若x 1,则x的值为    .
10.一个各数位均不为0的四位自然数M,若满足a+d=b+c=9,则称这个四位数为“友谊数”.例如:四位数1278,∵1+8=2+7=9,∴1278是“友谊数”.若是一个“友谊数”,且b﹣a=c﹣b=1,则这个数为    ;若M是一个“友谊数”,设F(M),且是整数,则满足条件的M的最大值是    .
11.定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.
(1)若P(3,m)是“和谐点”,则m=   ;
(2)若双曲线y(﹣3<x<﹣1)存在“和谐点”,则k的取值范围    .
12.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是    .
三、解答题
13.已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.
例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.
在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.
(1)求函数的“升幂函数”y2的函数表达式.
(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB=2时,求点A的坐标.
(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.
①若点B与点A重合,求m的值;
②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;
③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.
14.对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:
既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形:
只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;
只有内切圆,而无外接圆的四边形称为“内切型单圆”四边形:
既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.
请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”).
①平行四边形一定不是“平凡型无圆”四边形;    
②内角不等于90°的菱形一定是“内切型单圆”四边形;    
③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有Rr.    
(2)如图1,已知四边形ABCD内接于⊙O,四条边长满足:AB+CD≠BC+AD.
①该四边形ABCD是“   ”四边形(从约定的四种类型中选一种填入);
②若∠BAD的平分线AE交⊙O于点E,∠BCD的平分线CF交⊙O于点F,连接EF.求证:EF是⊙O的直径.
(3)已知四边形ABCD是“完美型双圆”四边形,它的内切圆⊙O与AB,BC,CD,AD分别相切于点E,F,G,H.
①如图2,连接EG,FH交于点P.求证:EG⊥FH;
②如图3,连接OA,OB,OC,OD,若OA=2,OB=6,OC=3,求内切圆⊙O的半径r及OD的长.
15.定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.
(1)函数y的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;
(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;
(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.
16.新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.
(1)写出C2的解析式(用含a的式子表示)及顶点坐标;
(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.
①当MN=6a时,求点P的坐标;
②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.
17.定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
18.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.
根据以上定义,解决下列问题:
(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?
(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.
①求BE的长;
②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.
19.阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数y=x2﹣4x+3的旋转函数.
(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.
(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.
20.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.
(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;
(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.
参考答案
一、选择题
1.【解答】解:由题意得,y=(x+1) 2=(x+1+2×2)(x+1﹣2)=(x+5)(x﹣1),
即y=x2+4x﹣5=(x+2)2﹣9,
∴函数y=(x+1) 2的最小值为﹣9.
故选:B.
2.【解答】解:根据题意得x(mx)+x+1=0,
整理得mx2+x+1=0,
∵关于x的方程【x,x+1】★(mx)=0有两个不相等的实数根,
∴Δ=12﹣4m 1>0且m≠0,
解得m且m≠0.
故选:D.
3.【解答】解:根据定义新运算,得x2﹣x=k,
即x2﹣x﹣k=0,
∵关于x的方程1※x=k有两个不相等的实数根,
∴Δ=(﹣1)2﹣4×(﹣k)>0,
解得:,
故选:A.
4.【解答】解:①根据题意可得:[﹣4.1]=﹣5,错误;
②∵[3.5]=3,
∴{3.5}=3.5﹣[3.5]=3.5﹣3=0.5,正确;
③高斯函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2,正确;
④函数y={x}中,当2.5<x<3时,[x]=2,0.5<x﹣[x]<1,即0.5<y<1,
当x=3时,[x]=3,x﹣[x]=0,即y=0,
当3<x≤3.5时,[x]=3,0<x﹣[x]≤0.5,即0<y≤0.5,
综上,0≤y<1,正确.
正确的命题有②③④.
故选:D.
5.【解答】解:①y1﹣y2=﹣2x﹣7,在1≤x≤2上,当x=1时,y1﹣y2最大值为﹣9,当x=2时,y1﹣y2最小值为﹣11,即﹣11≤y1﹣y2≤﹣9,故函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”不正确;
②y1﹣y2=﹣x2+5x﹣5,在3≤x≤4上,当x=3时,y1﹣y2最大值为1,当x=4时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2≤1,故函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”正确;
③y1﹣y2=﹣x2+x﹣1,在0≤x≤1上,当x时,y1﹣y2最大值为,当x=0或x=1时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2,当然﹣1≤y1﹣y2≤1也成立,故0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”正确;
④y1﹣y2=﹣x2+5x﹣5,在2≤x≤3上,当x时,y1﹣y2最大值为,当x=2或x=3时,y1﹣y2最小值为1,即1≤y1﹣y2,故2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”不正确;
∴正确的有②③,
故选:A.
6.【解答】解:A.令y1+y2=0,则x2+2x﹣x﹣1=0,解得x或x,即函数y1和y2具有性质P,符合题意;
B.令y1+y2=0,则x2+2x﹣x+1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;
C.令y1+y2=0,则x﹣1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;
D.令y1+y2=0,则x+1=0,整理得,x2﹣x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;
故选:A.
7.【解答】解:由题意得:,解得:,
当2x﹣1≥﹣x+3时,x,
∴当x时,y=min{2x﹣1,﹣x+3}=﹣x+3,
由图象可知:此时该函数的最大值为;
当2x﹣1≤﹣x+3时,x,
∴当x时,y=min{2x﹣1,﹣x+3}=2x﹣1,
由图象可知:此时该函数的最大值为;
综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x所对应的y的值,
如图所示,当x时,y,
故选:D.
8.【解答】解:∵x=y,
∴x=2x+m,即x=﹣m.
∵﹣1≤x≤3,
∴﹣1≤﹣m≤3,
∴﹣3≤m≤1.
故选:B.
二、填空题
9.【解答】解:∵x 1,
∴当x≤0时,x2﹣1,
解得x或x(不合题意,舍去);
当x>0时,﹣x+1,
解得x;
由上可得,x的值为或,
故答案为:或.
10.【解答】解:∵是一个“友谊数”,
∴a+d=b+c=9,
又∵b﹣a=c﹣b=1,
∴b=4,c=5,∴a=3,d=6,
∴这个数为3456;
∵是一个“友谊数”,
∴M=1000a+100b+10c+d=1000a+100b+10(9﹣b)+9﹣a=999a+90b+99,
∴,
∴,
∵是整数,
∴是整数,即是整数,
∴3a+b+6是13的倍数,
∵a、b、c、d都是不为0的正整数,且a+d=b+c=9,
∴a≤8,
∴当a=8时,31≤3a+b+6≤38,此时不满足3a+b+6是13的倍数,不符合题意;
当a=7时,28≤3a+b+6≤35,此时不满足3a+b+6是13的倍数,不符合题意;
当a=6时,25≤3a+b+6≤32,此时可以满足3a+b+6是13的倍数,即此时b=2,则此时d=3,c=7,
∵要使M最大,则一定要满足a最大,
∴满足题意的M的最大值即为6273;
故答案为:3456;6273.
11.【解答】解:(1)∵P(3,m)是“和谐点”,
∴,
消去t得到m2+4m﹣21=0,
解得m=﹣7或3,
∵x≠y,
∴m=﹣7;
故答案为:﹣7;
(2)∵双曲线y(﹣3<x<﹣1)存在“和谐点”,
∴,
①﹣②得(x)(x)=﹣4(x),
∴(x)(x4)=0,
∵x≠y,
∴x4=0,
整理得k=﹣x2﹣4x=﹣(x+2)2+4,
∵﹣3<x<﹣1,且x≠﹣2,
∴3<k<4.
故答案为:3<k<4.
12.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5
解得13≤x<15.
故答案为:13≤x<15.
三、解答题
13.【解答】(1),图象如图2所示.
(2)如图3,
∵,
设,B(m,3).
因为点B在点A的上方,
当AB=2时,
解得m=3.
所以A(3,1).
(3)①因为,
所以A(m,﹣m+4),B(m,﹣m2+4m).
如果点B与点A重合,那么﹣m+4=﹣m2+4m.
整理,得m2﹣5m+4=0.
解得m=1,或m=4.
②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),
如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.
因为BC∥x轴,所以B、C两点关于直线x=2对称.
如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,
如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,
由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,
当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,
当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.
综上,y.
③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.
当m=2时,y=﹣2m2+6m=4,所以P(2,4).
当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).
所以t2﹣t1=8﹣4=4.
情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.
由,得,
所以,
所以点F的横坐标,
于是可得,
所以.
综上,t2﹣t1=4或3﹣2.
14.【解答】解:(1)①当平行四边形的对角不互补时,对边和不相等时,
即内角不等于90°且邻边不相等的平行四边形是“平凡型无圆”四边形,
故①错误;
②∵内角不等于90°的菱形对角不互补,但是对边之和相等,
∴菱形是“内切型单圆”四边形,
故②正确;
③由题可知外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,
如图,此时OM=r,ON=R,
∵△OMN是等腰直角三角形,
∴ONOM,
∴Rr,
故③正确.
故答案为:①(×);②(√),③(√).
(2)①该四边形ABCD是“外接型单圆”四边形;
理由:∵AB+CD≠BC+AD,
∴四边形ABCD无内切圆.
∴四边形ABCD是“外接型单圆”四边形;
②证法1:如图1,∵AE平分∠BAD,CF平分∠BCD,
∴,,
∴,即,
∴与均为半圆,
∴EF是⊙O的直径.
证法2:如图1,连接AF.
∵四边形ABCD内接于⊙O,
∴∠BAD+∠BCD=180°,
∵AE平分∠BAD,CF平分∠BCD,
∴,,
∴∠1+∠2=90°,
由同弧所对的圆周角相等可得∠2=∠3,
∴∠1+∠3=90°,即∠EAF=90°.
∴EF是⊙O的直径
证法3:如图2,连接FD,ED.
∵四边形ABCD内接于⊙O,
∴∠BAD+∠BCD=180°,
由题意,得,,
∵由同弧所对的圆周角相等可得:∠EFD=∠1,∠FED=∠2,
∴,
∴∠FDE=90°.
∴EF是⊙O的直径.
(3)①证明:如图3,连接OE,OF,OG,OH,HG.
∵⊙O是四边形ABCD的内切圆,
∴OE⊥AB,OF⊥BC,OG⊥CD,OH⊥AD.
∴∠OEA=∠OHA=90°.
∴在四边形EAHO中,∠A+∠EOH=360°﹣90°﹣90°=180°.
同理可证∠FOG+∠C=180°,
∵四边形ABCD是“完美型双圆”四边形,
∴四边形ABCD有外接圆,
∴∠A+∠C=180°,
∴∠EOH=∠C.
∴∠FOG+∠EOH=180°
又∵∠FHG∠FOG,,
∴∠FHG+∠EGH=90°.
∴∠HPG=90°,即EG⊥FH.
②方法1:如图4,连接OE,OF,OG,OH.
∵四边形ABCD是“完美型双圆”四边形,
∴∠OAH+∠OAE+∠OCG+∠OCF=180°.
∵⊙O与AB,BC,CD,AD分别相切于点E,F,G,H,
∴∠OAH=∠OAE,∠OCG=∠OCF.
∴∠OAH+∠OCG=90°.
∵∠COG+∠OCG=90°,
∴∠OAH=∠COG.
∵∠AHO=∠OGC=90°,
∴△AOH∽△OCG.
∴,即,
解得,
在Rt△OGC中,有OG2+CG2=OC2,即,
解得,
在Rt△OBE中,
同理可证△BEO∽△OHD,
所以,即,
解得.
方法2:如图4,
由△AOH∽△OCG,得,即,
解得,
由△BEO∽△OHD,
得,即,
解得.
15.【解答】(1)解:存在,理由:
由题意得,(1,2)的“k级变换点”为:(k,﹣2k),
将(k,﹣2k)代入反比例函数表达式得:﹣4=k(﹣2k),
解得:k=±;
(2)证明:由题意得,点B的坐标为:(kt,kt+2k),
由点A的坐标知,点A在直线yx﹣2上,同理可得,点B在直线yx+2k,
则y1m2﹣2,y2m2+2k,
则y1﹣y2m2﹣2m2﹣2k=m2﹣2k﹣2,
∵k≤﹣2,则﹣2k﹣2+m2≥2,
即y1﹣y2≥2;
(3)解:设在二次函数上的点为点A、B,
设点A(s,t),则其“1级变换点”坐标为:(s,﹣t),
将(s,﹣t)代入y=﹣x+5得:﹣t=﹣s+5,
则t=s﹣5,
即点A在直线y=x﹣5上,
同理可得,点B在直线y=x﹣5上,
即点A、B所在的直线为y=x﹣5;
由抛物线的表达式知,其和x轴的交点为:(﹣1,0)、(5,0),其对称轴为x=2,
当n>0时,
抛物线和直线AB的大致图象如下:
直线和抛物线均过点(5,0),则点A、B必然有一个点为(5,0),设该点为点B,另外一个点为点A,如图,
联立直线AB和抛物线的表达式得:y=nx2﹣4nx﹣5n=x﹣5,
设点A的横坐标为x,则x+5,
∵x≥0,
则5≥0,
解得:n≤1,
此外,直线AB和抛物线在x≥0时有两个交点,故Δ=(﹣4n﹣1)2﹣4n(5﹣5n)=(6n﹣1)2>0,
故n,
即0<n≤1且n;
当n<0时,
当x≥0时,直线AB不可能和抛物线在x≥0时有两个交点,
故该情况不存在,
综上,0<n≤1且n≠1/6.
16.【解答】解:(1)根据“关联抛物线”的定义可得C2的解析式为:y=ax2+4ax+4a﹣3,
∵y=ax2+4ax+4a﹣3=a(x+2)2﹣3,
∴C2的顶点坐标为(﹣2,﹣3);
(2)①设点P的横坐标为m,
∵过点P作x轴的垂线分别交抛物线C1,C2于点M,N,
∴M(m,4am2+am+4a﹣3),N(m,am2+4am+4a﹣3),
∴MN=|4am2+am+4a﹣3﹣(am2+4am+4a﹣3)|=|3am2﹣3am|,
∵MN=6a,
∴|3am2﹣3am|=6a,
解得m=﹣1或m=2,
∴P(﹣1,0)或(2,0).
②∵C2的解析式为:y=a(x+2)2﹣3,
∴当x=﹣2时,y=﹣3,
当x=a﹣4时,y=a(a﹣4+2)2﹣3=a(a﹣2)2﹣3,
当x=a﹣2时,y=a(a﹣2+2)2﹣3=a3﹣3,
根据题意可知,需要分三种情况讨论,
Ⅰ、当a﹣4≤﹣2≤a﹣2时,0<a≤2,
且当0<a≤1时,函数的最大值为a(a﹣2)2﹣3;函数的最小值为﹣3,
∴a(a﹣2)2﹣3﹣(﹣3)=2a,解得a=2或a=2(舍);
当1≤a≤2时,函数的最大值为a3﹣3;函数的最小值为﹣3,
∴a3﹣3﹣(﹣3)=2a,解得a或a(舍);
Ⅱ、当﹣2≤a﹣4≤a﹣2时,a≥2,
函数的最大值为a3﹣3,函数的最小值为a(a﹣2)2﹣3;
∴a3﹣3﹣[a(a﹣2)2﹣3]=2a,
解得a(舍);
Ⅲ、当a﹣4≤a﹣2≤﹣2时,a≤0,不符合题意,舍去;
综上,a的值为2或.
17.【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:
∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,
∴y=5x+2=3(x+1)+(2x﹣1),
∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
(2)①由得,
∴P(2p+1,p﹣1),
∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),
∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),
∵点P在函数y1、y2的“组合函数”图象的上方,
∴p﹣1>(p﹣1)(m+n),
∴(p﹣1)(1﹣m﹣n)>0,
∵m+n>1,
∴1﹣m﹣n<0,
∴p﹣1<0,
∴p<1;
②存在m时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:
由①知,P(2p+1,p﹣1),
∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,
∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),
∴(p﹣1)(1﹣m﹣n)=0,
∵p≠1,
∴1﹣m﹣n=0,有n=1﹣m,
∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,
令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,
变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,
∴当3﹣4m=0,即m时,x0,
∴x=3,
∴m时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
18.【解答】解:(1)∵四边形ABCD是正方形,
∴∠ABC=∠BAD=∠C=∠D=90°,
∵将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,
∴BE=BF,∠CBE=∠ABF,
∴∠EBF=∠ABC=90°,
∴∠EBF+∠D=180°,
∴四边形BEDF为“直等补”四边形;
(2)①过C作CF⊥BE于点F,如图1,
则∠CFE=90°,
∵四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,
∴∠ABC=90°,∠ABC+∠D=180°,
∴∠D=90°,
∵BE⊥AD,
∴∠DEF=90°,
∴四边形CDEF是矩形,
∴EF=CD=1,
∵∠ABE+∠A=∠CBE+∠ABE=90°,
∴∠A=∠CBF,
∵∠AEB=∠BFC=90°,AB=BC=5,
∴△ABE≌△BCF(AAS),
∴BE=CF,
设BE=CF=x,则BF=x﹣1,
∵CF2+BF2=BC2,
∴x2+(x﹣1)2=52,
解得,x=4,或x=﹣3(舍),
∴BE=4;
②如图2,延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,过G作GH⊥BC,与BC的延长线交于点H.
则BC=BF=5,CD=DG=1,
∵∠ABC=∠ADC=90°,
∴CM=FM,CN=GN,
∴△MNC的周长=CM+MN+CN=FM+MN+GN=FG的值最小,
∵四边形ABCD是“直等补”四边形,
∴∠A+∠BCD=180°,
∵∠BCD+∠HCG=180°,
∴∠A=∠HCG,
∵∠AEB=∠CHG=90°,
∴△ABE∽△CGH,

∵AB=5,BE=4,
∴AE,
∴,
∴GH,CH,
∴FH=FC+CH,
∴FG8,
∴△MNC周长的最小值为8.
19.【解答】解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,
∵a1+a2=0,b1=b2,c1+c2=0,
∴a2=﹣1,b2=﹣4,c2=﹣3,
∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;
(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,
∴,
解得:,
∴(m+n)2020=(﹣2+3)2020=1.
(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,
∴点C的坐标为(0,﹣6).
当y=0时,2(x﹣1)(x+3)=0,
解得:x1=1,x2=﹣3,
∴点A的坐标为(1,0),点B的坐标为(﹣3,0).
∵点A,B,C关于原点的对称点分别是A1,B1,C1,
∴A1(﹣1,0),B1(3,0),C1(0,6).
设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),
将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,
解得:a=﹣2,
过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.
∵y=2(x﹣1)(x+3)=2x2+4x﹣6,
∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,
∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,
∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.
20.【解答】解:(1)∵y=x2﹣4,
∴其顶点坐标为(0,﹣4),
∵y=x2﹣4是y=﹣x+p的伴随函数,
∴(0,﹣4)在一次函数y=﹣x+p的图象上,
∴﹣4=0+p.
∴p=﹣4,
∴一次函数为:y=﹣x﹣4,
∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),
∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,
∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.
(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,
∴,
∵函数y=x2+2x+n与x轴两个交点间的距离为4,
∴,
解得,n=﹣3,
∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,
∴其顶点坐标为(﹣1,﹣4),
∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,
∴﹣4=﹣m﹣3,
∴m=1.
()

延伸阅读:

标签:

上一篇:福建省莆田第四中学2024-2025高二下学期第一次月考化学试卷(答案)

下一篇:Unit1-2英语综合检测卷(含答案含听力原文及音频)2024-2025人教版(2024)英语七年级下册