内蒙古赤峰市2025届高三下学期3·20模拟考试数学试卷(含答案)

内蒙古赤峰市2025届高三下学期3·20模拟考试数学试题
一、单选题
1.如图,向量对应的复数是,则的值为( )
A.6 B. C.13 D.
2.已知集合,其中表示不超过的最大整数,,则( )
A. B.
C. D.
3.已知向量和满足与的夹角为,则( )
A. B.2 C. D.
4.已知锐角满足,则的值为( )
A. B. C. D.
5.在平面内,两定点、之间的距离为,动点满足,则点轨迹的长度为( )
A. B. C. D.
6.某学校有两家餐厅,王同学第一天去两个餐厅的概率分别是和,如果第一天去餐厅,那么第二天去餐厅的概率为;如果第一天去餐厅,那么第二天去餐厅的概率为,则王同学第二天去餐厅的概率为( )
A. B. C. D.
7.如图所示,用一个与圆柱底面成角的平面截圆柱,截面是一个椭圆面,若,则椭圆的离心率为( )
A. B. C. D.
8.阅读材料:空间直角坐标系中,过点且一个法向量为的平面的方程为,阅读上面材料,解决下面问题:直线l是两平面与的交线,则下列向量可以为直线l的方向向量的是( )
A. B. C. D.
二、多选题
9.已知数列的前项和为,且,若,则( )
A. B.是公差为2的等差数列
C. D.
10.已知函数,则( )
A.是周期为的函数
B.与函数是同一函数
C.是的一条对称轴
D.在区间上的取值范围是
11.数学里常研究一些形状特殊的曲线,常用到数形结合的思想方法.比如形状酷似“星星”的曲线(如图所示),则下列关于曲线的说法正确的有( )
A.周长大于25
B.共有4条对称轴
C.围成的封闭图形面积小于14
D.围成的封闭图形内能放入圆的最大半径为1
三、填空题
12.展开式的常数项为 .
13.锐角中,分别为角所对的边,且,若,则周长的取值范围是 .
14.已知函数在上的最大值比最小值大,则 .
四、解答题
15.为了研究某市高三年级学生的性别和身高的关联性,随机抽取了200名高三年级学生,整理数据得到如下列联表,并画出身高的频率分布直方图:
性别 身高 合计
低于 不低于
女 20
男 50
合计 200
(1)根据身高的频率分布直方图,求列联表中的,的值;
(2)依据小概率值的独立性检验,能否认为“高三年级学生的性别”与“身高是否低于”有关联?
(3)将样本频率视为概率,在全市不低于的学生中随机抽取6人,其中不低于的人数记为,求的期望.
附:,
0.050 0.010 0.001
3.841 6.635 10.828
16.已知函数.
(1)求在点处的切线方程;
(2)若函数有两个极值点,求的取值范围.
17.已知数列中,.
(1)若依次成等差数列,求;
(2)若,证明数列为等比数列,并求数列的前项和.
18.如图所示,三棱柱中,平面平面,,,点为棱的中点,动点满足.
(1)当时,求证:;
(2)若平面与平面所成角的正切值为,求的值.
19.已知点为圆上任意一点,点,线段的垂直平分线交直线于点,设点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线相切,且与直线分别交于点.
(i)证明:点为线段的中点;
(ii)求的取值范围.
题号 1 2 3 4 5 6 7 8 9 10
答案 C D D B A C D B ACD AD
题号 11
答案 ABC
12.60
13.
14.1
15.(1)由图,低于的学生有人,则不低于170cm的学生有人.
从而,;
(2)零假设为:性别与身高没有关联,
计算可得
根据的独立性检验,推断不成立,因此该市高三年级学生的性别与身高是否低于170cm有关联;
(3)样本中抽中不低于175cm的频数为人
样本中抽中不低于175cm的频率为
将样本频率视为概率,在全市不低于170cm的学生中随机抽取6人,
其中不低于175cm的人数记为,则
.
16.(1)函数的定义域为,,
故,,
所以,在点处切线方程为,即.
(2)函数的定义域为,且,
有两个极值点等价于有两个不等正根,
即有两个不等正根,
设,,
当时,,单调递减,
当时,,单调递增,所以,
如下图所示:
当时,直线与函数的图象有两个交点,
设这两个交点的横坐标分别为、,
由图可知,当或时,,则,
当时,,则,
所以,函数的增区间为、,减区间为,
此时,函数的极大值点为,极小值点为,
故当时,有两个极值点,
综上,的取值范围为.
17.(1),
又依次成等差数列,所以,
即,解得.
(2)证明:因为,
且,所以是首项为1,公比为2的等比数列,
可得,则,
.
18.(1)方法一:由可得,,
即,即.
如图:
当时,在中,,,,因为,所以,又,所以.
因为平面平面,平面平面,平面,
所以平面.
又平面,所以.
又在平行四边形中,,,为中点,所以,
,平面,
所以平面.
又平面,所以.
方法二:(向量方法)
因为平面平面,平面平面,所以过作于,则平面;
连接,因为,所以.
在中,,,.
所以,则,
.

当时,.
.
所以.
(2)如图,由(1)得:两两垂直,故可以为原点,方向为轴,方向为轴,方向为轴,建立如图所示坐标系.
平面中,,.

设平面的法向量为:,
则,
令,则;
平面中,由(1)可知,,
设,因为,,
所以.

设平面的法向量为,
则,
令,则;
由题意,设平面与平面所成角为,且,则.,解得.
即平面与平面所成角的正切值为时,的值为.
19.(1)
为的垂直平分线上一点,则.
.
点的轨迹为以为焦点的双曲线,且
故点的轨迹方程为.
(2)
(i)设,
双曲线的渐近线方程为①,②
当直线的斜率存在时,设过点且与相切的直线的方程为,
与双曲线联立
由,且,故可得.
由;
.
.
点为线段的中点.
当直线的斜率不存在时,直线的方程是,根据双曲线的对称性可知,
此时直线即是双曲线的切线,同时满足点为线段的中点.
综上,点为线段的中点.
(ii)由(i)知,.
.
当且仅当,即时取等号.
又,
的取值范围为.

延伸阅读:

标签:

上一篇:2026人教版新教材英语高考第一轮同步基础练--选择性必修第3册 UNIT 5 POEMS(含答案与解析)

下一篇:2024~2025学年度苏锡常镇四市高三一模地理试卷(含答案)