第6章 实数 章末小结(含答案) 沪科版(2024)数学七年级下册

章末小结(第6章)
考点1 平方根 
1.2的平方根是( D )
A.2 B.±2
C. D.±
2.(四川内江中考)16的平方根是( D )
A.2 B.-4
C.4 D.±4
3.已知某正数m的两个平方根分别是x+13和3x-5,求x和m的值.
根据题意,得x+13+3x-5=0,
解得x=-2,则m=121.
考点2 算术平方根 
4.(广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是( B )
A.2 B.5
C.10 D.20
5.(四川德阳中考)将一组数,2,,2,,2,…,,…,按以下方式进行排列:
则第八行左起第1个数是( C )
A.7 B.8
C. D.4
6.(上海中考)已知=1,则x=__1__.
7.小红想用一块面积为900 cm2的正方形纸片,沿着边的方向裁出一块面积为600 cm2的长方形纸片,使它的长宽之比为5∶3,他不知道能否裁得出来,正在发愁,这时小明同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”
(1)长方形纸片的长和宽分别是多少厘米?
(2)你是否同意小明同学的说法?说明理由.
(1)设长方形纸片的长为5x(x>0)cm,则宽为3x cm,
依题意,得5x·3x=600,
15x2=600,
x2=40.
因为x>0,所以x=2,
所以长方形纸片的长为10 cm,宽为6 cm,
答:长方形纸片的长是10 cm,宽是6 cm;
(2)不同意小明同学的说法.
理由如下:因为面积为900 cm2的正方形的边长为30 cm,10>30,
所以长方形纸片的长大于正方形纸片的边长,
答:不能用这块纸片裁出符合要求的长方形纸片.
考点3 非负数的性质 
8.已知(x-11)2+=0,则(x+y)2 024的值是( A )
A.1 B.-1
C.2 024 D.-2 024
因为(x-11)2+=0,(x-11)2≥0,≥0,所以x-11=0,y+12=0,所以x=11,y=-12,所以(x+y)2 024=(11-12)2 024=1.
9.已知a,b,c满足|a-|++(c-)2=0,求代数式ab-3c的值.
由|a-|++(c-)2=0,得
解得
把a=2,b=5,c=3代入,得ab-3c=2×5-3×3=10-9=.
考点4 立方根 
10.已知a是64的立方根,2b-3是a的平方根,则a-4b的算术平方根为__1或3__.
因为a是64的立方根,2b-3是a的平方根,所以a=4,所以2b-3=±2,所以b=或b=,所以a-4b=×4-4×=11-10=1,或a-4b=×4-4×=11-2=9,所以a-4b的算术平方根为1或3.
11.(广西钦州期中)如果2a-1的算术平方根是3,3a+b-9的立方根是2,解下列关于x的方程:(a+2)x+b2=a-1.
依题意,得解得
∴关于x的方程为7x+4=4,
解得x=0.
考点5 无理数 
12.(四川眉山中考)下列四个数中,无理数是( D )
A.-3.14 B.-2
C. D.
13.在0.999…,0.101 001 000 1…(两个1之间依次增加一个0),π,,-,,这些数中,无理数的个数是__4__个.
14.如图是一个无理数筛选器的工作流程图.
(1)当x为9时,y值为____;
(2)如果输入x值后,没有算术平方根,筛选器的屏幕显示“该操作无法运行”,请写出此时输入的x满足的条件:__x<0__;
(3)当输出的y值是时,输入的x值并不唯一,请写出两个满足要求的x值:__x=2或x=4(答案不唯一)__.
(1)当x为9时,=3,3为有理数,再取3的算术平方根是,为无理数.
(2)根据负数没有算术平方根,即可判断x<0.
(3)x的值不唯一.当x=2时,是无理数,
当x=4时,=2,再取2的算术平方根是,为无理数.
考点? 实数与数轴 
15.(广西柳州月考)如图,数轴上有A,B,C三点,表示1和的对应点分别为A,B,点B到点A的距离与点C到原点O的距离相等,设A,B,C三点表示的三个数之和为p.
(1)求AB的长;
(2)求p;
(3)点D在点O的左侧,且DO=10,若以点D为原点,直接写出点C表示的数.
(1)因为表示1和的对应点分别为A,B,
所以AB=-1;
(2)因为点B到点A的距离与点C到原点O的距离相等,
所以OC=AB=-1.
因为点C在原点左侧,
所以点C所表示的数为0-(-1)=1-,p=1-+1+=2;
(3)因为点D在点O的左侧,且DO=10,
所以点D表示的数为-10,
所以以点D为原点,点C表示的数为1--(-10)=1-+10=11-.
考点? 实数的性质 
16.观察表格,回答问题:
a … 0.000 1 0.01 1 100 10 000 …
… 0.01 x 1 y z …
(1)表格中x=__0.1__,y=__10__;z=__100__;
(2)从表格中探究a与数位的规律,利用这个规律解决下面两个问题:
①已知≈3.16,则≈__31.6__;
②已知=8.973,若=897.3,用含m的代数式表示b,则b=__10_000m__;
(3)试比较与a的大小.
当__0<a<1__时,>a;当__a=1或0__时,=a;当__a>1__时,<a.
(1)x==0.1,y==10;z==100.
(2)①根据题意,得≈31.6;
②结果扩大100倍,则被开方数扩大10 000倍,
所以b=10 000m;
(3)当0<a<1时,>a;
当a=1或a=0时,=a;
当a>1时,<a.
17.(广西崇左月考)解答下列各题:
(1)已知=1-a2,求a的值;
(2)若与互为相反数,求1-的值.
(1)因为=1-a2,
所以1-a2=0或1-a2=1或1-a2=-1.
当1-a2=0,则a=±1;
当1-a2=-1,则a=±;
当1-a2=1,则a=0.
综上,a=±1或±或0;
(2)由题意,得+=0,
所以1-2b+3b-5=0,
所以b=4,
所以1-=1-=1-2=-1.
18.【阅读材料】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59 319的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.
你知道华罗庚是怎样迅速准确地计算出结果吗?请你按下面的步骤试一试:
第一步:因为=10,=100,1 000<59 319<1 000 000,
所以10<<100,所以能确定59 319的立方根是个两位数.
第二步:因为59 319的个位数是9,93=729,
所以能确定59 319的立方根的个位数是9.
第三步:如果划去59 319后面的三位319得到数59,
而<<,则3<<4,可得30<<40,
由此能确定59 319的立方根的十位数是3,因此59 319的立方根是39.
【解答问题】根据上面材料,解答下面的问题
(1)根据计算步骤,请计算12 167的立方根,并书写详细过程.
(2)填空:=__0.81__.
(1)第一步:因为=10,=100,1 000<12 167<1 000 000,所以10<<100,
所以能确定12 167的立方根是个两位数.
第二步:因为12 167的个位数是7,33=27,
所以能确定12 167的立方根的个位数是3.
第三步:如果划去12 167后面的三位167得到数12,
而<<,则2<<3,可得20<<30,
由此能确定12 167的立方根的十位数是2,因此12 167的立方根是23.
(2)第一步:因为=10,=100,1 000<531 441<1 000 000,所以10<<100,
所以能确定531 441的立方根是个两位数.
第二步:因为531 441的个位数是1,13=1,
所以能确定531 441的立方根的个位数是1.
第三步:如果划去531 441后面的三位441得到数531,
而<<,则8<<9,可得80<<90,由此能确定531 441的立方根的十位数是8,因此531 441的立方根是81,即=81,所以=0.81.章末小结(第6章)
考点1 平方根 
1.2的平方根是(  )
A.2 B.±2
C. D.±
2.(四川内江中考)16的平方根是(  )
A.2 B.-4
C.4 D.±4
3.已知某正数m的两个平方根分别是x+13和3x-5,求x和m的值.
考点2 算术平方根 
4.(广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是(  )
A.2 B.5
C.10 D.20
5.(四川德阳中考)将一组数,2,,2,,2,…,,…,按以下方式进行排列:
则第八行左起第1个数是(  )
A.7 B.8
C. D.4
6.(上海中考)已知=1,则x=__ __.
7.小红想用一块面积为900 cm2的正方形纸片,沿着边的方向裁出一块面积为600 cm2的长方形纸片,使它的长宽之比为5∶3,他不知道能否裁得出来,正在发愁,这时小明同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”
(1)长方形纸片的长和宽分别是多少厘米?
(2)你是否同意小明同学的说法?说明理由.
考点3 非负数的性质 
8.已知(x-11)2+=0,则(x+y)2 024的值是(  )
A.1 B.-1
C.2 024 D.-2 024
9.已知a,b,c满足|a-|++(c-)2=0,求代数式ab-3c的值.
考点4 立方根 
10.已知a是64的立方根,2b-3是a的平方根,则a-4b的算术平方根为__ __.
11.(广西钦州期中)如果2a-1的算术平方根是3,3a+b-9的立方根是2,解下列关于x的方程:(a+2)x+b2=a-1.
考点5 无理数 
12.(四川眉山中考)下列四个数中,无理数是(  )
A.-3.14 B.-2
C. D.
13.在0.999…,0.101 001 000 1…(两个1之间依次增加一个0),π,,-,,这些数中,无理数的个数是__ __个.
14.如图是一个无理数筛选器的工作流程图.
(1)当x为9时,y值为__ __;
(2)如果输入x值后,没有算术平方根,筛选器的屏幕显示“该操作无法运行”,请写出此时输入的x满足的条件:__ __;
(3)当输出的y值是时,输入的x值并不唯一,请写出两个满足要求的x值:__ __.
考点? 实数与数轴 
15.(广西柳州月考)如图,数轴上有A,B,C三点,表示1和的对应点分别为A,B,点B到点A的距离与点C到原点O的距离相等,设A,B,C三点表示的三个数之和为p.
(1)求AB的长;
(2)求p;
(3)点D在点O的左侧,且DO=10,若以点D为原点,直接写出点C表示的数.
考点? 实数的性质 
16.观察表格,回答问题:
a … 0.000 1 0.01 1 100 10 000 …
… 0.01 x 1 y z …
(1)表格中x=__ __,y=__ __;z=__ __;
(2)从表格中探究a与数位的规律,利用这个规律解决下面两个问题:
①已知≈3.16,则≈__ __;
②已知=8.973,若=897.3,用含m的代数式表示b,则b=__ _ __;
(3)试比较与a的大小.
当__ __时,>a;当__ __时,=a;当__ __时,<a.
17.(广西崇左月考)解答下列各题:
(1)已知=1-a2,求a的值;
(2)若与互为相反数,求1-的值.
18.【阅读材料】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59 319的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.
你知道华罗庚是怎样迅速准确地计算出结果吗?请你按下面的步骤试一试:
第一步:因为=10,=100,1 000<59 319<1 000 000,
所以10<<100,所以能确定59 319的立方根是个两位数.
第二步:因为59 319的个位数是9,93=729,
所以能确定59 319的立方根的个位数是9.
第三步:如果划去59 319后面的三位319得到数59,
而<<,则3<<4,可得30<<40,
由此能确定59 319的立方根的十位数是3,因此59 319的立方根是39.
【解答问题】根据上面材料,解答下面的问题
(1)根据计算步骤,请计算12 167的立方根,并书写详细过程.
(2)填空:=__ __.

延伸阅读:

标签:

上一篇:内蒙古乌兰察布市亿利东方学校2024-2025九年级下学期开学考试化学试题(图片版无答案)

下一篇:2025年人教版中考英语二轮专题语法复习---定语从句(含答案)