专题17.2 勾股定理的逆定理【八大题型】(精讲精练)(人教版)(原卷+解析卷)


专题17.2 勾股定理的逆定理【八大题型】
【人教版】
【题型1 由三边长度判断直角三角形】 1
【题型2 勾股数】 3
【题型3 格点中判断直角三角形】 6
【题型4 利用勾股定理的逆定理进行求值】 10
【题型5 利用勾股定理的逆定理进行证明】 13
【题型6 确定直角三角形的个数】 17
【题型7 勾股定理的逆定理的应用】 20
【题型8 勾股定理及其逆定理的综合运用】 23
知识点1:勾股定理的逆定理
如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
【题型1 由三边长度判断直角三角形】
【例1】(24-25八年级上·辽宁朝阳·期末)的三边分别为,下列条件不能使为直角三角形的是( )
A. B.
C. D.
【答案】D
【分析】本题考查了勾股定理的逆定理以及三角形内角和定理,利用勾股定理和三角形内角和对选项进行逐一判定即可.
【详解】解:A中、∵,
∴是直角三角形,故选项不符合题意;
B中、∵,
∴,
∴,
∴是直角三角形,故选项不符合题意;
C中、∵,
∴,
∴,
∴是直角三角形,故选项不符合题意;
D中、∵,

∵,
∴,
解得:,
∴,
∴不是直角三角形,故选项符合题意;
故选:D.
【变式1-1】(24-25八年级上·四川乐山·期末)已知的三边长、、满足条件:.那么的形状为( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
【答案】D
【分析】本题主要考查因式分解的应用,将整式因式分解是解题的关键.将等式左边分解因式可求得或,进而判定三角形的形状.
【详解】解:

或,
或,即的形状为等腰三角形或直角三角形,
故选:D.
【变式1-2】(24-25八年级上·广东深圳·期末)以下列四组数(单位:)为边长,其中能构成直角三角形的一组是( )
A.,, B.,, C.,, D.,,
【答案】B
【分析】本题考查了勾股定理的逆定理,解题的关键是判断三边是否满足两短边的平方和等于最长边的平方.
根据勾股定理的逆定理,分别计算每组数中两短边的平方和与最长边的平方,看是否相等,若相等则能构成直角三角形,否则不能.
【详解】A、,这三条边不能构成直角三角形;
B、,这三条边能构成直角三角形;
C、,这三条边不能构成直角三角形;
D、,这三条边不能构成直角三角形.
故选:B.
【变式1-3】(24-25八年级上·山西晋中·期中)已知的,和的对边分别是a,b和c,那么下列四个条件中能独立推出是直角三角形的有( )个
①;②;③;④.
A.4 B.3 C.2 D.1
【答案】C
【分析】本题考查勾股定理的逆定理、三角形内角和、直角三角形的性质、三角形三边关系,根据三角形内角和可以判断①和④;根据三角形三边关系可以判断②;根据勾股定理的逆定理可以判断③.
【详解】解:∵
∴最大的,故①不符合题意;
∵,
∴,该a、b、c三条线段构不成三角形,故②不符合题意;
∵,
∴,
∴,则该是直角三角形,故③符合题意;
∵,
∴,则该是直角三角形,故④符合题意;
故选:C.
知识点2:勾股数
勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a、b、c)。即a2+b2=c2,a、b、c都是正整数。
【题型2 勾股数】
【例2】(24-25八年级上·河南周口·阶段练习)下列各组数中,是勾股数的是( )
A.1,2,3 B.,,
C.,, D.9,12,15
【答案】D
【分析】根据勾股定理的逆定理分别进行分析,从而得到答案.
本题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形的三边满足,则是直角三角形.
【详解】解:A、,
∴该组数不是勾股数,
∴此选项不符合题意;
B、∵,,不是正整数,
∴该组数不是勾股数,该选项不符合题意;
C、∵,,不是正整数,
∴该组数不是勾股数,
∴此选项不符合题意;
D、,
∴该组数是勾股数,
∴此选项符合题意;
故选:D.
【变式2-1】(24-25七年级上·山东东营·期中)下列命题①如果a、b、c为一组勾股数,那么、、仍是勾股数;②如果直角三角形的两边是3、4,那么另一边必是5;③如果一个三角形的三边是5、13、14,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(),那么.其中正确的是( )
A.①④ B.①③ C.①② D.②④
【答案】A
【分析】本题主要考查了勾股数和直角三角形的性质,正确掌握勾股数的定义和直角三角形的性质是解题的关键.
根据勾股数的定义和直角三角形的性质,依次分析①②③④,选出正确的命题的序号,即可得到答案.
【详解】解:①如果为一组勾股数,则设,
则,
而、、一定是正整数,所以、、仍是勾股数,故①正确,符合题意;
②如果直角三角形的两边是3,4,则另一边的长可能为,且符合三角形的两边之和大于第三边,故②不正确,不符合题意;
③,
③错误,不符合题意;
④一个等腰直角三角形的三边,(),

即,
故①④正确,符合题意;
故选:A.
【变式2-2】(23-24八年级下·湖南株洲·期末)我国是最早了解勾股定理的国家之一,它被记载于我国古代著名的数学著作《周髀算经》中.下列各组数中,属于“勾股数”的是( )
A.1,2,3 B.3,4,5 C.4,5,6 D.5,6,7
【答案】B
【分析】本题主要考查了勾股数,熟练掌握勾股数的定义是解题的关键:
若三个正整数a、b、c满足,则称a、b、c为勾股数.根据“勾股数”的定义,逐项判断,即可求解.
【详解】A., 不是“勾股数”,故本选项不符合题意;
B., 是“勾股数”,故本选项符合题意;
C., 不是“勾股数”,故本选项不符合题意;
D., 不是“勾股数”,故本选项不符合题意;
故选:B.
【变式2-3】(24-25八年级上·江苏扬州·期中)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律, .
【答案】17
【分析】本题主要考查了勾股定理的逆定理.它们三个一组,都是勾股数,一组勾股数中,并且第一个都是奇数,并且从3开始的连续奇数,每一组勾股数的第二,第三个数是连续整数,第二个数是第一个数的平方减去一除以二.据此求解即可.
【详解】解:①3,4,5中;
②5,12,13中;
③7,24,25中;
④9,40,41中;
….
∴,
∴,
(负值已舍).
故答案为:17.
【题型3 格点中判断直角三角形】
【例3】(23-24八年级·广东惠州·期末)如图,在的正方形网格中每个小方格都是边长为的正方形,小正方形的顶点称为格点,线段的端点、都在格点上.
(1)在所给的的正方形网格中,不限方法画出一个以为直角边的直角;
(2)试计算所画的的面积.
【答案】(1)画图见解析;(画出三个中的一个即可)
(2)图和图中两直角面积都是,图中直角面积是.
【分析】()根据网格特点及勾股定理逆定理画图即可;
()根据()中所作的图形,利用割补法求出三角形面积即可;
本题考查了利用网格和勾股定理逆定理画直角三角形,利用割补法三角形面积,利用网格正确画出直角三角形是解题的关键.
【详解】(1)解:如图所求,即为所求;(画出三个中的一个即可)
(2)解:当所画的直角三角形是图时,;
当所画的直角三角形是图时,;
当所画的直角三角形是图时,.
【变式3-1】(23-24八年级·湖北恩施·期末)如图,在的网格中,每个小正方形边长都为1,的顶点均在格点上.求的度数.
【答案】.
【分析】本题考查了勾股定理与网格问题,根据勾股定理求得,进而根据勾股定理的逆定理,即可求解.
【详解】解:

∴是直角三角形

【变式3-2】(23-24八年级·广东珠海·期中)如图,四边形的四个顶点都在网格上,且每个小正方形的边长都为1.

(1)求四边形的面积;
(2)判断线段和的位置关系,并说明理由.
【答案】(1)17.5
(2),理由见解析
【分析】本题考查了四边形的面积,三角形的面积,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
(1)根据四边形的面积等于长方形的面积减去四个直角三角形的面积和一个小长方形的面积计算即可;
(2)根据勾股定理的逆定理判断即可.
【详解】(1)解:四边形的面积为:

(2)解:,
理由:如图,连接,
,,,

是直角三角形且,
即.
【变式3-3】(23-24八年级·山东淄博·期中)如图,网格内每个小正方形的边长都是1个单位长度,都在格点上,与相交于点P,则( )
A. B. C. D.
【答案】C
【分析】本题考查构造直角三角形,勾股定理,解题的关键是作辅助线,构造直角三角形,根据勾股定理,求出.
【详解】解:如图,过点作,

过格点,
连接,





故选:C.
【题型4 利用勾股定理的逆定理进行求值】
【例4】(23-24八年级·广西桂林·期末)如图,在四边形中,,,,,则的度数为 .
【答案】135
【分析】先根据等腰三角形的性质及已知条件可得,再根据勾股定理可得,然后根据勾股定理逆定理可知,最后根据角的和差即可解答.本题主要考查了等腰三角形的性质、勾股定理、勾股定理逆定理等知识点,灵活运用勾股定理相关知识成为解题的关键.
【详解】解:,,
,,

,,

即,

故答案为:135
【变式4-1】(23-24八年级·江苏南京·专题练习)如图,是直线外一点,、、三点在直线上,且于点,,若,,,,则点到直线的距离是 .
【答案】4
【分析】此题主要考查了点到直线的距离,勾股定理的逆定理,理解点到直线距离的定义,熟练掌握勾股定理的逆定理是解决问题的关键.先利用勾股定理的逆定理证明为直角三角形,得,然后再根据点到直线距离的定义可得出答案.【详解】解:,,,

为直角三角形,即,

点到直线的距离是是线段的长,
即点到直线的距离是是4.
故答案为:4.
【变式4-2】(23-24八年级·江苏南京·假期作业)已知 ,点是上的一个动点,则线段长的最小值是 .
【答案】
【分析】本题考查垂线段最短,根据垂线段最短得到当时,线段最短,勾股定理逆定理求出是直角三角形,等积法求出的长即可.
【详解】解:∵,,
∴,
∴为直角三角形,
∵垂线段最短,
∴当时,线段最短,
∴,
∴,
∴;
故答案为:.
【变式4-3】(23-24八年级·山东济宁·阶段练习)如图,是等边三角形内一点,将线段绕点顺时针旋转得到线段,连接.若
(1)证明
(2)求三角形的面积
【答案】(1)证明见解析
(2)6
【分析】(1)先由等边三角形的性质得到,再由旋转的性质得到,据此证明,再利用即可证明;
(2)先证明是等边三角形,得到,再利用勾股定理的逆定理证明,据此利用三角形面积公式求解即可.
【详解】(1)证明:∵是等边三角形,
∴,
由旋转的性质可得,
∴,即,
∴;
(2)解:由旋转的性质可得,
∴是等边三角形,
∴,
∵,
∴,
∴是直角三角形,且,
∴.
【点睛】本题主要考查了等边三角形的性质与判定,勾股定理的逆定理,旋转的性质,全等三角形的判定,熟知等边三角形的性质与判定条件是解题的关键.
【题型5 利用勾股定理的逆定理进行证明】
【例5】(23-24八年级·山东淄博·期末)如图,正方形ABCD的边长是4,BE=CE,DF=3CF.证明:∠AEF=90°.
【答案】见解析
【分析】利用勾股定理及勾股定理的逆定理解答即可.
【详解】证明:连接AF,
∵四边形ABCD是正方形,
∴∠B=∠C=∠D=90°,
∵正方形ABCD的边长是4,BE=CE,DF=3CF.
∴BE=CE=2,CF=1,DF=3,
由勾股定理得,
AE2=AB2+BE2=42+22=20,
EF2=CE2+CF2=22+12=5,
AF2=AD2+DF2=42+32=25,
又∵AE2+EF2=AF2,
∴△AEF是直角三角形,即∠AEF=90°.
【点睛】本题主要考查正方形的性质、勾股定理、勾股定理的逆定理,掌握其定理是解决此题关键.
【变式5-1】(23-24八年级·湖北孝感·阶段练习)设一个直角三角形的两条直角边长为a、b,斜边c上的高为h,试判断以,,h为边长的三角形的形状,并证明.
【答案】三角形是直角三角形.
【分析】先利用勾股定理得到a,b,c,h之间的关系,再根据勾股定理逆定理判定所求的三角形是直角三角形.
【详解】解:根据题意可知:
由勾股定理得,由面积得,
∵,

∴,
∴三角形是直角三角形.
【点睛】本题主要考查了勾股定理以及勾股定理逆定理的运用.要会熟练利用勾股定理的逆定理来判定直角三角形.
【变式5-2】(23-24八年级·河北唐山·期中)综合与实践
主题:检测雕塑(下图)底座正面的边和边是否分别垂直于底边.
素材:一个雕塑,一把卷尺.
步骤1:利用卷尺测量边,边和底边的长度,并测量出点之间的距离;
步骤2:通过计算验证底座正面的边和边是否分别垂直于底边.
解决问题:
(1)通过测量得到边的长是60厘米,边的长是80厘米,的长是100厘米,边垂直于边吗?为什么?
(2)如果你随身只有一个长度为的刻度尺,你能有办法检验边是否垂直于边吗?如果能,请写出你的方法,并证明.
【答案】(1),理由见解析
(2)能,理由见解析
【分析】本题考查勾股定理的逆定理的应用,
(1)由勾股定理逆定理求出,则可得出结论;
(2)在边上量一小段,在边上量一小段,这时只要量一下是否等于即可.
【详解】(1)解:垂直,理由为:
在中,因为,,,
所以,

所以,
所以.
(2)解:在边上量一小段,
在边上量一小段,,
这时只要量一下是否等于即可.
【变式5-3】(23-24八年级·福建厦门·阶段练习)定义:在中,若,,,,,满足则称这个三角形为“类勾股三角形”.请根据以上定义解决下列问题:
(1)如图1所示、若等腰三角形是“类勾股三角形”,其中,,请求的度数.
(2)如图2所示,在中,,且.请证明为“类勾股三角形”.
【答案】(1)
(2)证明见解析
【分析】本题考查等腰三角形的判定和性质、勾股定理、“类勾股三角形”的定义等知识,理解题意、灵活运用勾股定理进而数形结合思想是解题的关键.
(1)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;
(2)先求出,,,,,两个直角三角形中利用勾股定理建立方程即可得出结论.
【详解】(1)解:,,
,,
是类勾股三角形,


是等腰直角三角形,

(2)解:如图:以在上找一点使得,再作,










在中,,
在中,,


是“类勾股三角形”.
【题型6 确定直角三角形的个数】
【例6】(23-24八年级·河北唐山·期中)同一平面内有,,三点,,两点之间的距离为,点到直线的距离为,且为直角三角形,则满足上述条件的点有 个.
【答案】8
【分析】该题存在两种情况;(1)AB为斜边,则;(2)AB为直角边,或;
【详解】(1)当AB为斜边时,点到直线的距离为,即AB边上的高为,符合要求的C点有4个,如图:
(2)当AB为直角边时,或,符合条件的点有4个,如图;
符合要求的C点有8个;
故答案是8.
【点睛】本题主要考查了勾股定理的应用,准确分析判断是解题的关键.
【变式6-1】(23-24八年级·浙江台州·期中)在如图所示的的方格图中,点A和点B均为图中格点.点C也在格点上,满足为以为斜边的直角三角形.这样的点C有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】结合网格的性质和直角三角形的判定找到对应点即可.
【详解】解:如图,满足条件的点C共有4个,
故选D.
【点睛】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键.
【变式6-2】(23-24八年级·河北唐山·期中)在平面直角坐标系中,已知点,为坐标原点.若要使是直角三角形,则点的坐标不可能是( )
A. B. C. D.
【答案】C
【分析】本题考查坐标与图形的性质,直角三角形的性质,勾股定理的逆定理.根据题意,画出图即可,见详解.
【详解】解:如图所示,点的坐标不可能是,
A.点时,,此项不符合题意;
B.点时,,此项不符合题意;
C.点时,如图,不是直角三角,符合题意;
D.点时,由勾股定理求得,故,即,此项不符合题意;
故选:C.

【变式6-3】(23-24八年级·江西九江·期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为 .
【答案】(0,0),(,0),(﹣2,0)
【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形.再分Rt△PAC和Tt△PBC两种情况进行分析即可.
【详解】解:∵点P、A、B在x轴上,
∴P、A、B三点不能构成三角形.
设点P的坐标为(m,0).
当△PAC为直角三角形时,
①∠APC=90°,易知点P在原点处坐标为(0,0);
②∠ACP=90°时,如图,
∵∠ACP=90°
∴AC2+PC2=AP2,

解得,m=,
∴点P的坐标为(,0);
当△PBC为直角三角形时,
①∠BPC=90°,易知点P在原点处坐标为(0,0);
②∠BCP=90°时,
∵∠BCP=90°,CO⊥PB,
∴PO=BO=2,
∴点P的坐标为(﹣2,0).
综上所述点P的坐标为(0,0),(,0),(﹣2,0).
【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想.解题的关键是不重复不遗漏的进行分类.
【题型7 勾股定理的逆定理的应用】
【例7】(23-24八年级·辽宁盘锦·阶段练习)如图,某小区的两个喷泉A,B的距离.现要为喷泉铺设供水管道,,供水点M在小路上,到的距离,到喷泉B的距离.
(1)求供水点M到喷泉A,B需要铺设的管道总长;
(2)求出喷泉B到小路的最短距离.
【答案】(1)
(2)
【分析】本题考查了勾股定理以及勾股定理的逆定理的应用,
(1)在中,根据勾股定理求得的长,进而求得的长,在中,勾股定理求得的长即可求解;
(2)根据勾股定理的逆定理证明是直角三角形,可得,即可求解.
【详解】(1)解:在中,,
∴,
在中,,
∴供水点M到喷泉A,B需要铺设的管道总长:;
(2)解:∵,,,,
∴,
∴是直角三角形,
∴.
∴喷泉B到小路AC的最短距离是.
【变式7-1】(23-24八年级·北京·期末)我国南宋时期著名数学家秦九韶的著作《数书九章》里记载了这样一道题目: “今有沙田一块,有三斜,其中小斜七丈,中斜二十四丈,大斜二十五丈,欲知为田几何 ”译文是:有一块三角形沙田,三条边长分别为丈,丈,丈,这块沙田的面积是 平方丈
【答案】
【分析】本题考查勾股定理逆定理的实际应用,根据题意画出示意图,根据相关数据证明图形是直角三角形,根据面积公式计算即可.
【详解】解:根据题意,画出示意图如下:
丈,丈,丈,
,,

是直角三角形,且,
(平方丈),
故答案为:.
【变式7-2】(23-24八年级·湖北恩施·期末)某日早晨甲渔船以12海里/时的速度离开港口向东北方向航行,乙渔船以10海里/时的速度离开港口沿某一方向航行.上午两渔船相距26海里.则乙渔船航行的方向是 .
【答案】东南方向或西北方向
【分析】本题考查方位角,勾股定理的逆定理,熟练掌握勾股定理的逆定理的应用是解题的关键.设甲渔船离开港口O向东北方向航行到A,乙渔船离开港口O航行到B,则(海里),(海里),海里,由勾股定理的逆定理,判定出,再由表示东北方向,即可得出表示的方向.
【详解】解:设甲渔船离开港口O向东北方向航行到A,乙渔船离开港口O航行到B,
由题意,得 (海里), (海里),海里,



表示东北方向,
表示东南方向或西北方向.如图,
故答案为:东南方向或西北方向.
【变式7-3】(23-24八年级·山东济南·期末)如图,图1是某品牌婴儿车,图是其简化结构示意图.其中与之间由一个固定为的零件连接,即,根据安全标准需满足.淇淇爸爸只有测量长度的工具,且无法直接测量,请你帮他判断该车是否符合安全标准,请说明需要测量哪些数据,并说明如何判断.
【答案】需要测量,,和的长,见解析
【分析】本题主要考查了勾股定理的应用以及勾股定理的逆定理,先根据勾股定理求出的长,由,然后由勾股定理的逆定理得是直角三角形,,即可作判断.
【详解】解:判断该车是否符合安全标准,需要测量,,和的长,
判断如下:
在中,,可计算的长,
在中,根据,
可判断是直角三角形,,

该车符合安全标准.
【题型8 勾股定理及其逆定理的综合运用】
【例8】(23-24八年级·河北廊坊·阶段练习)如图,,,,,则 .
【答案】/45度
【分析】本题考查了等腰直角三角形的性质,勾股定理及其逆定理,二次根式的乘法运算,利用等腰直角三角形的性质以及勾股定理的逆定理即可解答.
【详解】解:,,,
,,
∵,,

是直角三角形,,

故答案为:.
【变式8-1】(23-24八年级·河北保定·期末)如图,中,,长为5,点D是上的一点,.
(1)是哪种类型的三角形,请给出证明;
(2)求出线段的长.
【答案】(1)直角三角形,见解析
(2)
【分析】(1)利用勾股定理的逆定理即可证明.
(2)设,则,在中,利用勾股定理列方程,从而解决问题.
【详解】(1)为直角三角形.
∵,,,



∴为直角三角形.
(2)在中,设,则,
由勾股定理得:
解得:,
∴.
【点睛】本题主要考查了勾股定理,勾股定理的逆定理等知识,判定是解题的关键.
【变式8-2】(23-24八年级·四川成都·期中)为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD空地上种植草皮.如图,经测量∠B=90 ,AB=6米,BC=8米,CD=24米,AD=26米.
(1)求AC的长.(2)判断△ACD的形状,并证明.
(3)若每平方米草皮需要300元,问需要投入多少元?
【答案】(1)AC=10米;(2)△ACD是直角三角形,证明见详解;(3)需要投入43200元.
【分析】(1)根据题意及勾股定理可直接进行求解;
(2)由(1)及题意可根据勾股定理逆定理进行求证即可;
(3)先求出四边形ABCD的面积,然后进行列式求解即可.
【详解】解:(1)∵∠B=90 ,AB=6米,BC=8米,
∴在Rt△ABC中,米,
即AC的长为10米;
(2)△ACD是直角三角形,理由如下:
由(1)得AC=10米,
∵CD=24米,AD=26米,
∴,
∴,
∴△ACD是直角三角形;
(3)由(1)(2)及题意得:
(平方米),
∴(元);
答:需投入43200元.
【点睛】本题主要考查勾股定理及逆定理的应用,熟练掌握勾股定理及逆定理的应用是解题的关键.
【变式8-3】(23-24八年级·江苏泰州·阶段练习)如图,若点是正方形外一点,且,,,则 °.
【答案】
【分析】将绕点顺时针旋转,得到,连接,利用旋转的性质得到,,,由等腰直角三角形性质可得,利用勾股定理得到,进而得到,由勾股定理逆定理可知,,最后根据,即可求得.
【详解】解:将绕点顺时针旋转,得到,连接,

,,
,,,



,,

是直角三角形,且,

故答案为:.
【点睛】本题考查正方形性质,旋转的性质,勾股定理,勾股定理逆定理,等腰三角形性质,解题的关键是作辅助线构造直角三角形解决问题.
精品试卷·第 2 页 (共 2 页)
()
专题17.2 勾股定理的逆定理【八大题型】
【人教版】
【题型1 由三边长度判断直角三角形】 1
【题型2 勾股数】 3
【题型3 格点中判断直角三角形】 6
【题型4 利用勾股定理的逆定理进行求值】 10
【题型5 利用勾股定理的逆定理进行证明】 13
【题型6 确定直角三角形的个数】 17
【题型7 勾股定理的逆定理的应用】 20
【题型8 勾股定理及其逆定理的综合运用】 23
知识点1:勾股定理的逆定理
如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
【题型1 由三边长度判断直角三角形】
【例1】(24-25八年级上·辽宁朝阳·期末)的三边分别为,下列条件不能使为直角三角形的是( )
A. B.
C. D.
【变式1-1】(24-25八年级上·四川乐山·期末)已知的三边长、、满足条件:.那么的形状为( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
【变式1-2】(24-25八年级上·广东深圳·期末)以下列四组数(单位:)为边长,其中能构成直角三角形的一组是( )
A.,, B.,, C.,, D.,,
【变式1-3】(24-25八年级上·山西晋中·期中)已知的,和的对边分别是a,b和c,那么下列四个条件中能独立推出是直角三角形的有( )个
①;②;③;④.
A.4 B.3 C.2 D.1
知识点2:勾股数
勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a、b、c)。即a2+b2=c2,a、b、c都是正整数。
【题型2 勾股数】
【例2】(24-25八年级上·河南周口·阶段练习)下列各组数中,是勾股数的是( )
A.1,2,3 B.,,
C.,, D.9,12,15
【变式2-1】(24-25七年级上·山东东营·期中)下列命题①如果a、b、c为一组勾股数,那么、、仍是勾股数;②如果直角三角形的两边是3、4,那么另一边必是5;③如果一个三角形的三边是5、13、14,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(),那么.其中正确的是( )
A.①④ B.①③ C.①② D.②④
【变式2-2】(23-24八年级下·湖南株洲·期末)我国是最早了解勾股定理的国家之一,它被记载于我国古代著名的数学著作《周髀算经》中.下列各组数中,属于“勾股数”的是( )
A.1,2,3 B.3,4,5 C.4,5,6 D.5,6,7
【变式2-3】(24-25八年级上·江苏扬州·期中)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律, .
【题型3 格点中判断直角三角形】
【例3】(23-24八年级·广东惠州·期末)如图,在的正方形网格中每个小方格都是边长为的正方形,小正方形的顶点称为格点,线段的端点、都在格点上.
(1)在所给的的正方形网格中,不限方法画出一个以为直角边的直角;
(2)试计算所画的的面积.
【变式3-1】(23-24八年级·湖北恩施·期末)如图,在的网格中,每个小正方形边长都为1,的顶点均在格点上.求的度数.
【变式3-2】(23-24八年级·广东珠海·期中)如图,四边形的四个顶点都在网格上,且每个小正方形的边长都为1.

(1)求四边形的面积;
(2)判断线段和的位置关系,并说明理由.
【变式3-3】(23-24八年级·山东淄博·期中)如图,网格内每个小正方形的边长都是1个单位长度,都在格点上,与相交于点P,则( )
A. B. C. D.
【题型4 利用勾股定理的逆定理进行求值】
【例4】(23-24八年级·广西桂林·期末)如图,在四边形中,,,,,则的度数为 .
【变式4-1】(23-24八年级·江苏南京·专题练习)如图,是直线外一点,、、三点在直线上,且于点,,若,,,,则点到直线的距离是 .
【变式4-2】(23-24八年级·江苏南京·假期作业)已知 ,点是上的一个动点,则线段长的最小值是 .
【变式4-3】(23-24八年级·山东济宁·阶段练习)如图,是等边三角形内一点,将线段绕点顺时针旋转得到线段,连接.若
(1)证明
(2)求三角形的面积
【题型5 利用勾股定理的逆定理进行证明】
【例5】(23-24八年级·山东淄博·期末)如图,正方形ABCD的边长是4,BE=CE,DF=3CF.证明:∠AEF=90°.
【变式5-1】(22-23八年级·湖北孝感·阶段练习)设一个直角三角形的两条直角边长为a、b,斜边c上的高为h,试判断以,,h为边长的三角形的形状,并证明.
【变式5-2】(23-24八年级·河北唐山·期中)综合与实践
主题:检测雕塑(下图)底座正面的边和边是否分别垂直于底边.
素材:一个雕塑,一把卷尺.
步骤1:利用卷尺测量边,边和底边的长度,并测量出点之间的距离;
步骤2:通过计算验证底座正面的边和边是否分别垂直于底边.
解决问题:
(1)通过测量得到边的长是60厘米,边的长是80厘米,的长是100厘米,边垂直于边吗?为什么?
(2)如果你随身只有一个长度为的刻度尺,你能有办法检验边是否垂直于边吗?如果能,请写出你的方法,并证明.
【变式5-3】(23-24八年级·福建厦门·阶段练习)定义:在中,若,,,,,满足则称这个三角形为“类勾股三角形”.请根据以上定义解决下列问题:
(1)如图1所示、若等腰三角形是“类勾股三角形”,其中,,请求的度数.
(2)如图2所示,在中,,且.请证明为“类勾股三角形”.
【题型6 确定直角三角形的个数】
【例6】(23-24八年级·河北唐山·期中)同一平面内有,,三点,,两点之间的距离为,点到直线的距离为,且为直角三角形,则满足上述条件的点有 个.
【变式6-1】(23-24八年级·浙江台州·期中)在如图所示的的方格图中,点A和点B均为图中格点.点C也在格点上,满足为以为斜边的直角三角形.这样的点C有( )
A.1个 B.2个 C.3个 D.4个
【变式6-2】(23-24八年级·河北唐山·期中)在平面直角坐标系中,已知点,为坐标原点.若要使是直角三角形,则点的坐标不可能是( )
A. B. C. D.
【变式6-3】(23-24八年级·江西九江·期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为 .
【题型7 勾股定理的逆定理的应用】
【例7】(23-24八年级·辽宁盘锦·阶段练习)如图,某小区的两个喷泉A,B的距离.现要为喷泉铺设供水管道,,供水点M在小路上,到的距离,到喷泉B的距离.
(1)求供水点M到喷泉A,B需要铺设的管道总长;
(2)求出喷泉B到小路的最短距离.
【变式7-1】(23-24八年级·北京·期末)我国南宋时期著名数学家秦九韶的著作《数书九章》里记载了这样一道题目: “今有沙田一块,有三斜,其中小斜七丈,中斜二十四丈,大斜二十五丈,欲知为田几何 ”译文是:有一块三角形沙田,三条边长分别为丈,丈,丈,这块沙田的面积是 平方丈
【变式7-2】(23-24八年级·湖北恩施·期末)某日早晨甲渔船以12海里/时的速度离开港口向东北方向航行,乙渔船以10海里/时的速度离开港口沿某一方向航行.上午两渔船相距26海里.则乙渔船航行的方向是 .
【变式7-3】(23-24八年级·山东济南·期末)如图,图1是某品牌婴儿车,图是其简化结构示意图.其中与之间由一个固定为的零件连接,即,根据安全标准需满足.淇淇爸爸只有测量长度的工具,且无法直接测量,请你帮他判断该车是否符合安全标准,请说明需要测量哪些数据,并说明如何判断.
【题型8 勾股定理及其逆定理的综合运用】
【例8】(23-24八年级·河北廊坊·阶段练习)如图,,,,,则 .
【变式8-1】(23-24八年级·河北保定·期末)如图,中,,长为5,点D是上的一点,.
(1)是哪种类型的三角形,请给出证明;
(2)求出线段的长.
【变式8-2】(23-24八年级·四川成都·期中)为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD空地上种植草皮.如图,经测量∠B=90 ,AB=6米,BC=8米,CD=24米,AD=26米.
(1)求AC的长.
(2)判断△ACD的形状,并证明.
(3)若每平方米草皮需要300元,问需要投入多少元?
【变式8-3】(23-24八年级·江苏泰州·阶段练习)如图,若点是正方形外一点,且,,,则 °.
精品试卷·第 2 页 (共 2 页)
()

延伸阅读:

标签:

上一篇:Unit 3 My school calendar Part A Let's learn Read and say同步练习(含解析)

下一篇:Unit 3 My school calendar Part B(1) Let's try Let's talk 同步练习(含解析)