第五单元 第6课时 多边形的内角和 分层作业
1.填一填。
(1)长方形、正方形都是( )边形,每个内角都是( )°,它们的内角和都是( )°。
(2)连接四边形的一条对角线,把它分割成( )个三角形,因为三角形的内角和是180°,所以四边形的内角和是( )°。
(3)用两个完全相同的直角三角形拼成一个三角形,拼成的三角形的内角和是( )°;如果拼成一个平行四边形,拼成的平行四边形的内角和是( )°。
2.选一选。
(1)三个完全一样的三角形拼成一个梯形,这个梯形的内角和是( )。
A.180° B.360° C.540°
(2)用4根木条钉成一个长方形,再把它拉成一个平行四边形,这个平行四边形的内角和与原来长方形的内角和相比,( )。
A.变大了 B.一样大 C.变小了 D.无法确定
3.判断。(对的打“√”,错的打“×”)
(1)任意四边形的内角和都是360°。( )
(2)一个四边形有三个内角是90°,这个四边形一定是正方形。( )
(3)一个四边形的内角和是360°,把它平均分成4个小三角形,每个小三角形的内角和都是90°。( )
4.算出下面每个四边形中未知角的度数。
5.求∠1、∠2、∠3的度数。
6.如图,一张长方形纸折叠后,∠1=40°,∠3是多少度?
7.一张直角三角形纸片,剪去直角后变成一个四边形,求∠1和∠2的度数和。
8.把下面图形的序号填在相应的框内,你发现了什么?
(1)发现:n(n≥3)边形的内角和=( )。
(2)通过探究,我们发现了n(n≥3)边形内角和的规律。如果一个多边形的内角和是1080°,那么这个多边形是几边形?
(3)同同要画一个内角和是600°的多边形。你觉得她画得出来吗?为什么?
9.数学课上,在探究“四边形内角和是多少度”的问题时,三位同学给出了不同的解题方法。
(1)他们的解题方法正确吗?在正确的名字后面的括号里画“√”。
(2)根据乐乐的解答方法,说说他是怎么想的。
10.(1)将一个正方形剪去一个角后,剩下的图形的内角和是多少度?
照样子,用直线裁截下面的五边形,使得到的新多边形满足相应的条件。
【夯实基础】
1.填一填。
(1)长方形、正方形都是( 四 )边形,每个内角都是( 90 )°,它们的内角和都是( 360 )°。
(2)连接四边形的一条对角线,把它分割成( 2 )个三角形,因为三角形的内角和是180°,所以四边形的内角和是( 360 )°。
(3)用两个完全相同的直角三角形拼成一个三角形,拼成的三角形的内角和是( 180 )°;如果拼成一个平行四边形,拼成的平行四边形的内角和是( 360 )°。
2.选一选。
(1)三个完全一样的三角形拼成一个梯形,这个梯形的内角和是( B )。
A.180° B.360° C.540°
(2)用4根木条钉成一个长方形,再把它拉成一个平行四边形,这个平行四边形的内角和与原来长方形的内角和相比,( B )。
A.变大了 B.一样大 C.变小了 D.无法确定
3.判断。(对的打“√”,错的打“×”)
(1)任意四边形的内角和都是360°。( √ )
(2)一个四边形有三个内角是90°,这个四边形一定是正方形。( × )
(3)一个四边形的内角和是360°,把它平均分成4个小三角形,每个小三角形的内角和都是90°。( × )
【进阶提升】
4.算出下面每个四边形中未知角的度数。
∠1=360°-120°-60°-60°=120° ∠2=360°-90°×2-60°=120°
解析:本题考查四边形内角和为360°。(1)已知三个内角的度数,用360°减去已知的三个内角的度数,可求出∠1的度数。(2)已知两个直角和一个底角的度数,不难计算出∠2的度数。
5.求∠1、∠2、∠3的度数。
∠1=180°-90°-30°=60°
∠2=90°-60°=30°
∠3=180°-135°-30°=15°
6.如图,一张长方形纸折叠后,∠1=40°,∠3是多少度?
∠2=(180°-40°)÷2=70°
∠3=360°-90°×2-70°=110°
7.一张直角三角形纸片,剪去直角后变成一个四边形,求∠1和∠2的度数和。
∠3+∠4=180°-90°=90°
∠1+∠2=360°-90°=270°
答:∠1和∠2的度数和为270°。
8.把下面图形的序号填在相应的框内,你发现了什么?
(1)发现:n(n≥3)边形的内角和=( (n-2)×180° )。
解析:三角形内角和为180°,四边形内角和为360°,五边形内角和为540°……根据规律可得:n(n≥3)边形的内角和为(n-2)×180°。
(2)通过探究,我们发现了n(n≥3)边形内角和的规律。如果一个多边形的内角和是1080°,那么这个多边形是几边形?
1080÷180°=6 6+2=8
答:这个多边形是八边形。
解析:根据“n(n≥3)边形内角和为(n-2)×180°”,列式求n即可。
(3)同同要画一个内角和是600°的多边形。你觉得她画得出来吗?为什么?
她画不出来。因为600°里面有3个180°还多60°,不符合多边形的内角和公式。
【拓展应用】
9.数学课上,在探究“四边形内角和是多少度”的问题时,三位同学给出了不同的解题方法。
(1)他们的解题方法正确吗?在正确的名字后面的括号里画“√”。
(2)根据乐乐的解答方法,说说他是怎么想的。
乐乐由一个顶点出发把这个四边形分成两个三角形,一个三角形的
内角和是180°,所以这个四边形的内角和是180°×2=360°。
(合理即可)
10.(1)将一个正方形剪去一个角后,剩下的图形的内角和是多少度?
①剩下的图形是五边形,如图 。则剩下的图形的内角和是540°。
②剩下的图形是三角形,如图 ,则剩下的图形的内角和是180°。
③剩下的图形是四边形,如图 ,则剩下的图形的内角和是360°。
综上所述,剩下的图形的内角和是540°,180°或360°。
(2)照样子,用直线裁截下面的五边形,使得到的新多边形满足相应的条件。
解析:根据多边形内角和的规律可知,多边形每增加一条边,内角和增加180°,多边形每减少一条边,内角和减少180°,多边形边数不变,内角和不变。