2024届高三数学复习——《数列递推式,数列求和》
1.已知函数,数列的前项和满足,下列说法正确的是( )
A.
B.数列的偶数项成等差数列,奇数项成等比数列
C.若,则数列的通项公式为
D.若,则数列的通项公式为
2.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号。用他名字定义的函数称为高斯函数,其中表示不超过的最大整数,已知数列满足,若,为数列的前项和,则=
3.已知数列满足,,则数列的前202项和为
4.已知数列满足,记数列的前项和为,若对于任意的,不等式恒成立,则实数的取值范围是
5.已知数列的首项,且满足,则存在正整数,使得成立的实数组成的集合为
6.(多选)已知数列满足,数列的前项和为,且,则( )
A. B.
C.数列为单调递增的等差数列 D.,正整数的最小值为31
7.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列满足,,则( )
A. B.
C. D.数列的前项和为
8.已知数列满足,,且,则( )
A. B.数列是等比数列
C.数列是等差数列 D.数列的前项和为
9.数列首项,对一切正整数,都有,则( )
A.对一切正整数都有 B.数列单调递减
C.存在正整数,使得 D.都是数列的项
10.(多选)斐波那契数列满足,边长为斐波那契数的正方形所对应扇形面积记为,则( )
A. B.
C. D.
11.(1)已知数列满足,若,则的通项公式为
(2)已知数列满足,则的通项公式
为
(3)已知数列满足,则的通项公式为
(4)已知数列中,,则的通项公式为
(5)已知数列和满足,且对任意都有,则数列的通项公式为
(6)已知数列和满足,且,则数列的通项公式为 ,的通项公式为
12.分形几何在计算机生成图形和游戏中有广泛应用.按照如图1所示的分形规律可得如图2所示的一个树形图.设图2中第n行黑圈的个数为,则 ,数列的通项公式 .
13.如图是瑞典数学家科赫在年构造的能够描述雪花形状的图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.
设原三角形(图)的边长为,把图,图,图,中的图形依次记为,,,...,,...,则的边数 ,所围成的面积 .
14.在数列中,则 ,的前项和为
15.已知数列的首项,且满足对任意都成立,则能使成立的正整数的最小值为
16.为不超过x的最大整数,设为函数,的值域中所有元素的个数.若数列的前n项和为,则 .
17.已知数列满足,,记数列的前项和为,则= .
18.已知公差为的等差数列的前项和为,且,,且,则 .
19.设数列满足,,则数列的前19项和为 .
20.记数列中不超过正整数n的项的个数为,设数列的前n项的和为,则等于 .
21.数列满足,且对任意的都有,则 .
22.已知数列、、满足则下列有可能成立的是( )
A.若为等比数列,则 B.若为递增的等差数列,则
C.若为等比数列,则 D.若为递增的等差数列,则
23.已知数列{}的前n项和为,若对任意恒成立,则 .
24.已知数列满足.设,为数列的前项和.若(常数),,则的最小值是 .
25.已知数列的前n项和为,且,设函数,则 .
26.已知数列满足:,,;数列满足:,.
(1)求证:数列为等比数列,数列为等差数列;
(2)令,求数列的前项和.
27.已知在数列中,,且.在数列中,,且.
(1)证明:数列为等比数列.
(2)求数列和数列的通项公式.
28.已知在各项均不相等的等差数列中,,且,,成等比数列,数列中,,,.
(1)求的通项公式;
(2)求证:是等比数列,并求的通项公式;
(3)设,求数列的前项的和.
29.已知数列的前项和为,且满足,当时,.
(1)计算:,;
(2)证明为等差数列,并求数列的通项公式;
(3)设,求数列的前项和.
30.已知数列中,,,且.
(1)设,试用表示,并求的通项公式;
(2)设,求数列的前项和.
31.已知数列中,,且等比数列满足:且
(1)求数列和数列的通项公式.
(2)设数列的前项和为,若不等式对任意都成立,求实数的取值范围.数列递推式、数列求和参考答案
2 2
1.答案:C f (x) = (2x + 2) , f (n) = Sn+1 + Sn,∴ Sn+1 + Sn = 4(n+1) ①
当 n =1时,S2 + S1 =16
2
;当n 2时, Sn + Sn 1 = 4n ,②
①-②,得 S n 2n+1 Sn 1 =8n+4,即an+1 +an =8n+4, ( )③
因为首项a 不确定,所以a +a 的值不确定,所以a1 +a2 =12不一定成立,故 A 错误;当n 3时,an +an 1 =8n 41 1 2 ④
③-④,得 a an+1 an 1 =8,故数列 n 偶数项成等差数列,奇数项从a3开始成等差数列,故 B 错误;
因为n 2时,an+1 4(n +1) = (an 4n),当a1 = a = 4时,a =16 2a =8,a 4 2 = 0,此时 an 4n2 2 从第 2 项
起构成常数列,每一项均为 0,所以an 4n = 0,即an = 4n (n 2),又a1 = a = 4满足上式,所以an=4n,所以 C 正
n 2
确;当a 4时, an 4n 从第 2 项起,构成首项为8 2a ,公比为-1 的等比数列,故an = 4n + (8 2a) ( 1) (n 2)
又 n =1时,a1 = a 不符合上式,所以 D 错误.
2.由 a + 4a = 5a ,得an+2 n n+1 n+2 an+1 = 4(an+1 an ),又a2 a1 = 3,所以数列 an+1 an 是以 3 为首项,4 为公比的等
n 1
比数列,则a a = 3 4 ①;由 an+2 + 4an = 5a 得,a a 4an+1 n n+1 n+2 4an+1 = an+1 4an,又a2 4a1 = 3,所以数列 n+1 n
n
是常数列,则an+1 4an = a2 4a1 = 3②,由①②联立可得a = 4 +1;因为4
n
n+1 4
n +1 2 4n ,所以
log 4n log(4n +1) log (2 4n ),即:2n log (4
n +1) 2n+1 所以bn = log2an+1 = log (4n +1) 2 = 2n2 2 2 2 ,
1000 1000 1 1 1 1 1 1 1 1
故 = = 250 ,所以 S2022 = 250 1 + + + = 250 1 ,则
bnbn+1 2n (2 n+1) n n+1
2 2 3
2022 2023 2023
S2022 = 249.
n n n+1 n n+1
3.在数列 an 中,a *1 =1, a2n = a2n 1 + ( 1) , a2n+1 = a2n +3 ,n N ,则有 a2n+2 = a2n+1 + ( 1) = a2n +3 + ( 1) ,
即 a2n+2 a2n = 3
n + ( 1)n+1,而a2 = 0,于是得a2n = a2 + (a4 a2)+ (a6 a4)+ + (a2n 2 a2n 4)+ (a2n a2n 2)
= [3+ ( 1)2]+[32 + ( 1)3]+ +[3n 2 + ( 1)n 1]+[3n 1 + ( 1)n] = [3+32 + +3n 2 +3n 1]+[( 1)2 + ( 1)3 + + ( 1)n 1 + ( 1)n]
3(1 3n 1) 1 ( 1)n 1 1 n 1 n a + a = a +3n + a = 2a +3n
1 n 1 n
= + = 3 + ( 1) 1,因此, 2n+1 2n 2n 2n 2n = 2[ 3 + ( 1) 1]+3
n
1 3 1 ( 1) 2 2 2 2
= 2 3n + ( 1)n 2,则 S2017 = a1 + (a2 +a3)+ (a4 +a5)+ (a6 +a7)+ + (a2016 +a2017)
=1+[2 3+ ( 1) 2]+[2 32 + ( 1)2 2]+[2 33 + ( 1)3 2]+ +[2 31008 + ( 1)1008 2]
=1+2(3+32 +33 + +31008)+[( 1)+ ( 1)2 + ( 1)3 + + ( 1)1008] 2 1008
3(1 31008)
=1+ 2 + 0 2016 = 31009 2018,数列 an 的前 2017 项的和为31009 2018 .故选:D
1 3
试卷第 1 页,共 11 页
4.依题意an+1+1= 2 (an +1),当 时, ,则a a +11+1= 2,所以数列 n 是首项为2 ,公比为2 的等比数列,an +1= 2
n,
an +1 2
n 1 1
即 an = 2
n 1,所以 = =
(a + 2)(a + 2) ( n )( n+1 ) 2n +1 2n+1 ,所以n n+1 2 +1 2 +1 +1
1 1 1 1 1 1 1 1 1 1
Tn = + + + = 1 ,所以 k 的取值范围是 ,+ .故选:C. 2 +1 22 +1 22 +1 23 +1 2n +1 2n+1 +1 3 2n+1
+1 3 3
1 n *
5.∵数列 的首项 ,且满足a a = a + a a + a a + + a an+1 an = ( ) (n N ) ,可得 n 1 ( 2 1 ) ( 3 2 ) ( n n 1 )
2
n
1
2 1 n
1 1
1 2 2 1
=1+ + + + ( )
n 1 = = [1 ],又存在正整数 n,使得 (an )(an+1 ) 0 成立,
2 2 2 1 3 21+
2
n n+1
2 1 1 2 1
当 n为偶数时,an = [1 ],单调递增,可得an 的最小值为a2 = ;a = [1+ ],单调递减,可得an+1的
3 2 2
n+1
3 2
n
3 1 3 2 1
最大值为a = ,可得an a3 n+1,即有 ;当 n为奇数时,a = [1+ ],单调递减,可得an n 的最大4 2 4 3 2
n+1
2 1 1 1
值为 ;a = [1 ],单调递增,可得an+1的最小值为a a2 = ,可得 n+1 an,即有 1;∴ 的n+1
3 2 2 2
1
取值范围是 ,1 .故选:C.
2
6.【答案】BCD
2 3
【详解】对 AB,因为a2 =8,所以
( 1) 1
a2 = 2 a1 + 2a1 = 4a1 = 8,解得a1 = 2,则
( )
a3 = 2 a ,2 +3a2 = 28
4 a n
( 1) 4,所以 = 6,a a = 336,所以 A 选项错误,B 选项正确;对 C,因为 ( 1)a a = 2 a + na ,4 = 2 a3 + 4a3 =168 1 4a n n 1 n 13
a n 2nn ( 1) a2n ( 1) a
即 = 2 + n,所以 = 2 + 2n = 2n + 2 又 2n. n *N ,所以数列 为单调递增的等差数列,所以 C 选项
a an 1 2n 1 a2n 1
a 2n+22n+2 ( 1) a a= 2 + 2n + 2 = 2n + 4 b = log (a a ) log (a a ) = log 2n+2 2n 1
n + 2
正确;对D,因为 ,所以 n 2 2n+2 2n 1 2 2n 2n+1 2 = log2 ,
a2n+1 a2na2n+1 n +1
3 4 n+1 n+ 2 3 4 n +1 n + 2 n + 2
所以 S = log + log + + log + log = log2 = log2 4n 2 2 2 2 ,解得n 30 .又
2 3 n n+1 2 3 n n +1 2
n *N ,所以正整数 n的最小值为 31,所以 D 选项正确,故选:BCD.
7.【答案】BCD
【详解】对于 A,a2 = a1 +1+1= 2,a3 = a2 +2 = 4,a4 = a3 +3+1=8,A 错误;对于 B,当 n为奇数时, n+1为偶数,
则a = a +n+1,a = a +n+1,可得an+2 n+1 n+1 n n+2 = an + 2(n +1);当n为偶数时,n+1为奇数,则an+2 = an+1 +n+1+1,
an+1 = an +n,可得an+2 = an + 2(n +1),B 正确;对于 C,当n为奇数且 时
a2 = a1 +1+1,a3 = a2 +2,a4 = a3 +3+1, ,an 1 = an 2 +n 2+1,an = an 1 +n 1,累加可得
an = a1 +1+1+2+3+1+ +n 2+1+n 1 = (1+1+ 3+1+ + n 2+1)+ (2+ 4+ + n 1)
试卷第 2 页,共 11 页
2+ n 1 n 1 2+ n 1 n 1 n2 1
= + = , 时也符合;
2 2 2 2 2
当n为偶数且 时a2 = a1 +1+1,a3 = a2 +2,a4 = a3 +3+1, ,an 1 = an 2 +n 2,an = an 1 +n 1+1,
累加可得a = a +1+1+2+3+1+ +n 2+n 1+1 = (1+1+ 3+1+ + n 1+1)+ (2+ 4+ + n 2n 1 )
n2 1
,n为奇数
2+ n 1+1 n 2+ n 2 n 2 n2 2
= + = ;则an = ,C 正确;
2 2 2 2 2 n
2
,n为偶数
2
n
对于 D,设数列 ( 1) an 的前2n项和为 S2n,则S2n = a1 +a2 a3 +a4 a2n 1 +a2n ,又
2 2
(2n) (2n 1) 1 2+ 2n
a2n a = = 2n, S2n = 2+ 4+ + 2n = n = n (n+1),D 正确.故选:BCD. 2n 1
2 2 2
8.【答案】ABD
【详解】因为 an + an+1 = 2 ( 1)
n
, a5 =1,所以 a4 = 2 a5 =1, a3 = 2 a4 = 3, a2 = 2 a3 = 5, a1 = 2 a2 = 7,
*
故 A 正确;当n = 2k 1(k N )时,an + an+1 = 2,an+1 +an+2 = 2,两式相减得,an+2 an = 4,所以 的奇数项
n +1
是以 7 为首项,4 为公差的等差数列,故 B 正确;当n = 2k 1(k *N )时,an = 7 + 4 1 = 2n 9 .
2
当 n = 2k (k *N )时,an + an+1 = 2,,两式相减得,an+2 an = 4,所以 的偶数项是以 5 为首项, 4为公差的等
n
差数列,所以当n = 2k 时,an = 5 4 1 = 9 2n ;∵ 2 a4 a3 + a5 |,∴ an 不是等差数列,故 C 错误;
2
a = ( 1)n+1因为 n (2n 9), 所以anan+1 = ( 1)
n+1(2n 9) ( 1)n+2(2n 7) = (2n 9)(2n 7) ,
1 1 1 1 1
设bn = ,则bn = = ,所以ba a 1
+b2 +b3 + +bn
n n+1 (2n 9)(2n 7) 2 2n 9 2n 7
1 1 1 1 1 1 1 1 1 1 1 1 n
= + + + + + + + = = ,故 D 正确;故选:ABD. 2 7 5 5 3 3 1 2n 9 2n 7 2 7 2n 7 14n 49
9.【答案】ABD
1 an 1 1 1
【详解】对于 A,由a a a 1 a = a 1 = = +1 =1n+1 n = 2an 1,得 ( n+1 ) n n ,即 ,所以 ,an+1 1 an 1 an 1 an+1 1 an 1
1 1 1 1
又 =1,所以数列 是首项为 1,公差为 1 的等差数列,所以 =1+ (n 1) = n,所以an = +1.因为a 1 a 1 an 11 n n
1 1
+1 1,故 A 正确;对于 B,由an+1 an = 0,得an+1 an,故 B 正确;对于 C,因为对任意正整数n都
n n(n+1)
有1 an a n1,即1 an 2,所以2a2n 2,所以不存在正整数 ,使得an = 2a2n ,故 C 错误;对于 D,因为
10n (10n 1)+1 ( n ) 10
n
= (n N*),且 10 1 N*,所以 (n N*)都是数列 的项,故 D 正确.故选:ABD.
10n 1 10n 1 10
n 1
10.【答案】AD
试卷第 3 页,共 11 页
【详解】由递推公式an = an 1 + an 2 (n 3),可得an+2 = an+1 +a an = 2an +an 1, n 2 = an an 1,
所以an 2 + an+2 = 2an + an 1 + an an 1 = 3an (n 3),A 选项正确;又由递推公式可得 ,a2 = a a ,a3 = a4 a3 1 2 ,
类似的有an = an+1 an 1 (n 2),累加得a1 +a2 +a3 + +an = an +an+1 a2 = an+2 1,故a1 +a2 +a3 + +a2019 = a2021 +1
2 2 2
错误,B 选项错误;由题可知扇形面积bn = an ,故bn bn 1 = (an an 1 ) = (an + an 1 )(an an 1 ) = an+1 an 2 ,
4 4 4 4
π
故 ( 2b2020 b2019 ) = a2018 a2021错误,C 选项错误;由an = an 1 + an 2 (n 3),a1 = a2 a1,
4
a22 = a2 a2 = a2 (a3 a1 ) = a3 a2 a2 a
2
1, a3 = a3 a3 = a3 (a4 a2 ) = a4 a3 a3 a2,类似的有
a2n = an an = an (an+1 an 1 ) = an+1 an an an 1,累加得
a2 2 2 2 21 + a2 + a3 + + an = a1 + (a3 a2 a2 a1 )+ (a4 a3 a3 a2 )+ + (an+1 an an an 1 ) = an+1 an ,
又bn = a
2 2 2
n ,所以b1 +b2 +b3 + +bn = (a1 + a2 + a2 + + a23 n ) = an+1 an ,
4 4 4
π
所以b1 +b2 +b3 + +b2020 = a2020 a2021正确,D 选项正确;故选:AD.
4
1 an+1 + an+2 1 1
11.由5an+2 + 4an+1 an = 0,得 an+1 + an+2 = (an+1 + a =n ),即 所以数列{a +a }是公比为 的等比数列;因
5 an + a 5
n n+1
n+1 5
1 1 6 6 1 6 1
a = n 1为 1 ,a2 = ,所以 a1 + a2 = ,又数列{a +a }是首项为 ,公比为 的等比数列,所以 a + an n+1 n n+1 = ( ) ,
5 25 25 25 5 25 5
1
a ( )n+1
1 1 1 1 1
于是 n+1 = (an ( )
n ) = ( 1)n (a1 )
n
,又因为 a1 = 0,所以 an ( ) = 0
n
,即 an = ( ) .
5 5 5 5 5 5
nan 1 n n 1 n
(2)由 an = ,两边取倒数化简可得: +1= 2 +1 , 数列 +1 是首项为 2,公比为 2 的等比数an 1 + 2n 2 an an 1 an
n n n
列, +1= 2
n
,即 a {a }
a n
= .数列 n 的通项公式为an n = n
n 2 1 2 1
a 8 a + 2 a 2 1 a +5 (an 2)+3 1 3
(3)由题意,an+1 2 =
n 2 = n = n = n = ,所以 = 1,
an 5 an 5 an 5 an+1 2 a a 2 a 2n 2 an 2 n+1 n
1 1 1 1 1 1 3 1 1 3
则 = 3 ,而 = ,故 是以 为首项,3 为公比的等比数列.
a 2 2 a 2 2 a1 2 2 2n+1 n an 2 2 2
1 1 3 1 4 2 3n
= 3n 1
2
于是 = 3
n an = = 2+ .
an 2 2 2 2 1 3
n 1 3n
n a a a a
(4)因为 an = an 1 + 2n 3
n 2
,所以 n = n 1 + 2 3
n 2 2
,当 时,由累加法得 n 1 = 2+ 2 3+ 2 3 + + 2 3
n 2
,
n 1 n n 1 n 1
an 2(1 3
n 1)
因为 ,所以 时,有 =1+ = 3n 1
1 1
,即 an = n 3
n 1 (n 2),又 时,a1 =1 3 =1,成立,故
n 1 3
a = n 3n 1n (n N * ).
1 an+1 b= n
an+1 bn 1 an 1 1 1
(5)【答案】a = 对任意 都有a +b =1, , = = = = +1n n n a 1 a2 a 1 a2 . ,n +1 n n n n 1 a
2
n 1+ an an+1 an
1 1 1 1
即 1
1
. 数列 是首项为 ,公差为 1 的等差数列. a = b ,且a1 b1 1, a1 = b1 = .
an 1 a a
1 1
2
n an 1
试卷第 4 页,共 11 页
1 1
= 2+ (n 1) = n +1. an = an n +1
an + 4b(6)∵b n
1 26a + 4b 26a + 4b a + 4b 2
n+1 = ,∴an+1 = (5an +bn+1)=
n n ,∴a n n n nn+1 bn+1 = = (an bn )
5 6 30 30 5 3
n 1 n 1
2 2 2
∴ an bn 是a1 b1 =1为首项, 为公比的等比数列,∴a b = ,∴a = b + 3 n n n n 3 3
n 1
a
b = n
+ 4bn 1 2 1 2
∵ n+1 = bn + ( )
n 1 + 4b n ,∴bn+1 bn = ;∴当 时,5 5 3 5 3
n 1 2
0 n 2 1 n 11 2 2 1
3 8 3 2
bn = b1 + (b2 b1)+ (b3 b2 )+ + (bn bn 1) =1+ + + =1+
= .当 时,b =1也适
5 3 3 5 2
5 5 3 1 1 3
n 1 n 1 n 1
合上式;所以数列
8 3 2 2 8 2b
2
n 的通项公式为bn = ,数列 的通项公式为an = bn + = + .
5 5 3 3 5 5 3
3n ( 1)n
12.【答案】 41 记第 n行白圈的个数为bn ,由题意可得b1 = 0, ,an+1 = an +bn ,bn+1 = 4an +bn
6 2
an+2 + an+1 = 3(an+1 + an )
则an+2 an+1 = 4an +an+1 an ,所以an+2 = 2an+1 +3an ,所以 ,由 ,a2 =1得
an+2 3an+1 = (an+1 3an )
a
n 1
n 1 n 1 n n 5 n n
n+1 + an = 2 3 3 + ( 1) 3 ( 1) 3 1 3 ( 1)
n 1 ,所以a = ,即a = ,故a , n n 5 = + = 41 an =
an+1 3a = 2 ( 1) 2 6 2 6 2 6 2n
n 1
2 3 3 3 4
13.【答案】 48 记Mn 的边数为Nn ,三角形边长为an ,面积为 Sn, 由图形变换规律可知:
5 20 9
n 1 1Nn = 3 4 ,an = a N = 3 4
2 = 48 M M
n 1 ,则 3 ;由图形可知: n 是在 n 1每条边上生成一个小三角形(去掉底边),
3
3
则 S = S + N a2
3 3 3
,由 Sn S
2
n 1 = an Nn 1,S S
2 … 2
n n 1 n 1 n n 1 n 2
= an 1 Nn 2, ,S2 S1 = a2 N1;左右分别相
4 4 4 4
3 2 1
加得:Sn S = (a21 2 N1 + + a2 N + a2N ); 数列 an 是公比为 的等比数列,数列 N n 1 n 2 n n 1 n 是公比为 4 的等比
4 9
n 1
1 4
1
n 1 n 1
3 9 n 1 3 4 3 3 3
4 2 3 3 3 4
数列, 2 a N + + a2 N + a2N = = 1 , Sn = + 1 =
.
2 1 n 1 n 2 n n 1 4 5 9 4 4 5 9
5 20 9
1
9
n n
14.【答案】 3 1023133,由 an+1 + ( 1) an = n ,得a = n ( 1) a ,又 ,所以a2 =1 ( 1)a = 2n+1 n 1 ,
2 3 4 5 6
a3 = 2 ( 1) a2 = 0,a4 = 3 ( 1) a3 = 3,a5 = 4 ( 1) a4 =1, a6 = 5 ( 1) a5 = 6 , a7 = 6 ( 1) a6 = 0,
7 8 9 10 11
a8 = 7 ( 1) a7 = 7,a9 = 8 ( 1) a8 =1, a10 = 9 ( 1) a9 =10 , a11 =10 ( 1) a10 = 0, a12 =11 ( 1) a11 =11,
12 13
a13 =12 ( 1) a12 =1,a14 =13 ( 1) a 13 =14, ;因为2022 = 505 4+ 2,所以,明显可见,规律如下:
a1,a5,a9,a13, ,a2021,成各项为 1 的常数数列,其和为1 506 = 506 ,a2,a6,a10,a14, ,a2022 ,成首项为 2,公差为4 的
试卷第 5 页,共 11 页
506 505
等差数列,其和为506 2+ 4 = 506
2 2 = 512072,a3,a7 ,a11,a15, ,a2019,成各项为 0 的成常数数列,其和
2
505 504
为0 505 = 0,a4,a8,a12,a16, ,a2020 ,成首项为 3,公差为 4 的等差数列,其和为505 3+ 4 = 510555 ,
2
故 S2022 = 506+512072+0+510555=1023133 .
15.【答案】15
【详解】由 (an+1 an 3)(an+1 2an ) = 0 知:an+1 = an +3或an+1 = 2an;当an+1 = an +3时,数列 是以2 为首项,3为
2024
公差的等差数列, an = 2+ 3(n 1) = 3n 1,则am = 3m 1= 2023,解得:m = (舍);当an+1 = 2an时,数列
3
a = 2 2n 1 n m是以 2 为首项,2 为公比的等比数列, n = 2 ,则am = 2 = 2023,解得:m = log2 2023(舍);
数列 应是等差与等比的交叉数列,又a1 = 2,a2 = 4或a2 =5;若要m最小,则am = 2020+3= 2 1010+3,
am 1 = 2020,am 2 =1010,am 3 = 505,am 4 = 502,am 5 = 251,am 6 = 248,am 7 =124,am 8 =124,am 9 = 62,
am 10 = 31,a mm 11 = 28,am 12 =14,am 13 = 7,am 14 = 4,am 14 = a1 = 2, 的最小值为15 .
1011
16.【答案】
1012
【详解】根据题意, 时, x [0,1) , x = 0,则 f (x) = x x = 0,故 ;
n = 2时,x [0,2), x 0,1 ,故 x x {0} [1, 2) 则 f (x) = x x {0,1},故 a2 = 2;n = 3时,x [0,3), x 0,1, 2 ,
故 x x {0} [1, 2) [4,6),则 f (x) = x x {0,1,4,5},故a3 = 4,按此步骤进行下去,当 x [0,n), ,
x 0,1, ,n 1 , x x {0} [1,2) [4,6) [9,12) (n 1)
2 ,n(n 1)),故 f (x) = x x 包含的整数个数
n(n 1) n2 n+ 2
an =1+1+ 2+ + n 1=1+ (n 2) ,经检验 , 也满足,故a = (n N* ),则
2 n 2
1 2 2 1 1 1 1 1 1 1 1 n
= = = 2 2 ,根据裂项求和,Sn = 2 + + + = ,an + 2 n +3n+ 2 (n+1)(n+ 2) n+1 n+ 2 2 3 3 4 n +1 n + 2 n + 2
2022 1011 1011
故 S2022 = = .故答案为:
2024 1012 1012
an+1 n n a
2
n + n 1 n 1 n n 1
17.【详解】因为a 0 , = 2 ,所以 = = an +n ,所以an = , an an + n 1 a a an+1 an an n+1 n
1 0 2 1 n n 1 n 0 n
又 Sn = a1 + a2 + + an = ( )+ ( )+ + ( ) = = ,故Snan+1 = n, a2 a1 a3 a2 an+1 an an+1 a1 an+1
18.【详解】因为公差为d (d 0)的等差数列 an 满足a1 = d ,所以an = a1 + (n 1)d = nd ,所以
(a + a 1 d 2 1 1 2 1 1 1 n )n n(n+1)d 2 m m 1 m
Sn = = ,bn = Sn = n(n+1) = d Cn+1 ,又Cn +Cn =Cn+1
2 2 Sn 2 d n n+1 d n n+1
2 2 1 2 2 1 1 2 2 1 1 2 1 1
所以b +b = d C 1 + d C + d C + + d C
2
1 2 + +b10 2 3 4 11
d 2 d 2 3 d 3 4 d 10 11
试卷第 6 页,共 11 页
( 2 2 2 2
2
)
1 1 1 1 1 1 1 2 1
= d C2 +C3 +C4 + +C
3 2 2 2
11 1 + + + + d
= d (C3 +C3 +C4 + +C11 ) 1
2 2 3 3 4 10 11 d 11
= d C3
2 1 3 2 1 20 1 1 1 35
12 1 = 0,即d C12 = 1 , 220d = ,d = ,所以b11 = S11 = 6 = .故选:B
d 11 d 11 11d 11 S11 6 6
n 2 n 1
19.【详解】因为an+1 an = 2 + 2,所以a2 a1 = 2+ 2,a3 a2 = 2 + 2, ,an an 1 = 2 + 2,所以
2 n 1 2(1 2
n 1)
a a = 2+ 2 + + 2 + 2(n 1) = + 2(n 1) = 2n
n
n 1 2+ 2(n 1),又a1 = 5,所以an = 2 + 2n+1,
1 2
a nn 2 + 2n+1 (n +1)
2 + 2n+1 (n2 + 2n ) 1 1
则 = = = 2 n 2 n 2 n 2 n+1 2 n 2 n+1 2 n 2 n+1 , (n + 2 )(n + 2 + an ) (n + 2 )[(n+1) + 2 ] (n + 2 ) (n +1) + 2 n + 2 (n +1) + 2
a
故数列数列 n 的前 19 项和为:2 n 2 n
n + 2 n + 2 + a ( )( n )
1 1 1 1 1 1 1 1
+ + + =
3 22 + 22 22 + 22 32 + 23 192 + 219
,
202 + 220 3 410 + 400
20.【详解】a1 =1,a2 =1,a3 = 2,a4 = 2, ,a = 2,a = 3,当n 3
k 1,3k
8 9 )时,an = k,a = k +1, 3k
所以 S k =1 2 + 2 6 + 3 18+ + k (3k 3k 1 ) + k +1 = 2 30 +4 31 +6 32 + +2k 3k 1 + k +1, 3
记T
0
k = 2 3 + 4 3
1 + 6 32 + + 2k 3k 1,3Tk = 2 3
1 + 4 32 +6 33 + + 2k 3k ,两式相减得
1 3k 1 k 1 1 k 3
2Tk = 2 3
0 + 2 31 + 2 32 + + 2 3k 1 2k 3k = 2 2k 3k ,化简得Tk = k 3 + ,所以 S k = k 3 + k + 3
1 3 2 2 2 2
21.【详解】已知am+n = am +an +mn,令m =1可得an+1 = a1 +an +n = an +n+1,则 时,an an 1 = n,an 1 +an 2 = n 1,
(n+1)n
,a3 a2 = 3,a2 a1 = 2,将以上式子累加可得an a1 = n+n 1+ +3+2,则an = n+ n 1+ +3+ 2+1= ,
2
(n +1)n 1 2 1 1
时也符合,则a = , = = 2 n ( )
,则
2 an n +1 n n n +1
1 1 1 1 1 1 1 1 1 1 201
+ + + + = 2 1 + + + = 2 1 = .
a1 a2 a3 a201 2 2 3 201 202 202 101
22.【详解】因为a1 = b1 = c1 =1,cn = an+1 an,∴c1 = a2 a1,即a2 = a1 +c1 = 2,若 为等比数列,则 的公比
a b n+1
q = 2 = 2 n+1
b c 2
为 ,∴an = 2
n 1,cn = an+1 an = 2
n 2n 1 = 2n 1 n+1 n+2,由cn+2 = cn ,可得 = = = 4
a b b c 2n 1
,
1 n n n
b b
n 1 2 n+1 n+1
cn+2
∴bn = 4 = an ,故 AC 错误;若 cn 为递增的等差数列,c1 =1,公差d 0,由 cn+2 = cn 则 = , b b cn n n
b b3 b b2 4 n+1 c3 c c4 5 cn+2 bn+1 cn+1cn+2 cn+1cn+2 1 c2 1+ d 1 1 ∴ = ,∴ = ,即bn+1 = ,∴ = = ,
b1 b2 b b c c c c b c3 n 1 2 3 n 1 1c2 c2 bn cn+1cn d cn cn+1
1 1 1 1 1+ d 1 1 1 1 1 1 1 1 1+ d 1 1 1+ d 1 1 1
∴ Sn = + + + + = + + + + = = ,
b2 b3 b4 bn d c2 c3 c3 c4 c4 c5 cn cn+1 d c2 cn+1 d 1+ d cn+1 d
试卷第 7 页,共 11 页
又 cn =1+ (n 1)d ,cn = an+1 an ,an = (an an 1 )+ (an 1 an 2 )+ + (a2 a1 )+ a1 ,
(n 2)(n 1) 1 1 1 1 1
∴ a = n+ d ,又n 3,an n 0,则Tn = + + + = , n
2 a3 3 a4 4 an n a3 3 d
∴当 时,不等式Sn Tn 恒成立,故 S2022 T2022 ,故 B 正确,D 错误.故选:B.
n(n 1) n(n+1)
23.【详解】由题设,S = na ,故 S = (n+1)a ,所以an+1 = (n+1)an+1 n(an +1) a a =1n n n+1 n+1 ,即 n+1 n ,
2 2
2022
i
故2a a = a +1,所以 ( 1) (2ai+1 ai ) = (a2 +1) + (a3 +1) (a4 +1) + ... (an+1 n n+1 2022 +1) + (a2023 +1)
i=1
= (a3 a2)+ (a5 a4)+ ...+ (a2023 a2022) =1011 1=1011.故答案为:1011
24.【详解】n=1时,a =3,因为a1 + 2a2 + 3a3 + + nan = (2n 1 3
n
1 ) ①
a + 2a n 1所以 1 2 + 3a3 + + (n 1)an 1 = (2n 3) 3 ②
4
,n=1 3,n=1n 1 n 1 3
① ②得:na = 4n 3 ,即a = 4 3 ( ),不符合a =3,所以 an = b =n n 1 n 1 , ,
4 3 ,
n
n 2 n ,n 2
3n 1
4 2 3 n 1 1 2 3 n 1 1 1 2 3 n
所以 Sn = + + + + = + + + + + ③, Sn = + + + + + ④
3 3 32 3n 1 3 30 31 32 3n 1 3 9 31 32 33 3n
1
1
2 2 1 1 1 n 2 n n 31 6n+9 31
③ ④得: Sn = + + + + = +
3
0 1 n 1 n n .化简得: Sn = , 3 9 3 3 3 3 9 1 3 12 4 3n1 12
3
31 31
因为 Sn ,所以 的最小值是 .故答案为: .
12 12
1 1 1 2n 1 1 1 2(n 1)
25.【详解】∵ + + + = ①,∴当 时, + + + = ②,
S1 S2 Sn n +1 S1 S2 Sn 1 n
1 2 n (n +1 1 n= ) =1 (n+1)①-②得 ,∴ Sn = (n 2);当 时, ,∴ S =1,此时 S 仍然成立, S n (n+1) S 1 n
=
n 2 1 2
n (n+1) n (n+1) (n 1)n
∴ Sn = (n *N ).∴当 n=1 时, a1 = S1 =1;当 时,an = Sn S , n 1 = = n
2 2 2
* 1 1
当 n=1 时,上式也成立,故an = n (n N ).由于 f (x)+ f (1 x) = cosπx + + cos(π πx)+ =1,
2 2
a a a3 a 1 2 31 2 2021 设 S = f + f + f + + f
2021
= f + f + f + + f
2022 2022 2022 2022 2022 2022 2022 2022
1 2021 2 2020 2021 1
则 2S = f + f + f + f 2022 2022 2022 2022
+ + f + f 2022 2022
= 2021,
2021 2021
∴ S = .故答案为: .
2 2
1 3
26.解:(1)数列 满足: ,anan+1 +3an+1 = an, ,则an 0,于是得 = +1 , an+1 an
1 1 3 1 1 1 1 1 3 1 1 3
即 + = +1+ = 3( + ) ,而 + = ,所以数列 + 是以 为首项,3 为公比的等比数列;
an+1 2 an 2 an 2 a1 2 2 an 2 2
试卷第 8 页,共 11 页
1 1 1 1 1 1 1 1
因 n N* , (1 )(1 ) (1 ) = ,则当 时, (1 )(1 ) (1 ) = ,
b1 b2 bn bn b1 b2 bn 1 bn 1
1 bn 1
两式相除得:1 = ,整理得bn bn 1 =1,所以数列 bn 是公差为 1 的等差数列. bn bn
1 1 3
+ = 3n 1 2a =
a n n b
(2)由(1)知,数列 中, n
2 2
,即 3 1,数列 n 中,b1 = 2,则bn = n+1,
n n+1 n+1
b2n b 1
4 4[(3 1)(3 1)+3 ]
因此,cn = (3 3
n +1)a a = (32n+1 3nn n+1 +1) =
(3n 1)(3n+1 1) (3n 1)(3n+1 1)
6[(3n+1 1) (3n 1)] 1 1
= 4+ = 4+ 6( ),令数列 cn 的前n项和为Sn ,则: Sn = c1 + c2 + c3 + + c
(3n
n
1)(3n+1 1) 3n 1 3n+1 1
1 1 1 1 1 1 1 1 6
= 4n+ 6[( )+ ( )+ + ( )] = 4n+ 6( ) = 4n +3
3 1 32 1 32 1 33 1 3n 1 3n+1 1 2 3n+1 1 3n+1
,
1
6
所以数列 cn 的前n项和为4n+3 .
3n+1 1
3
an+1 + n +1+3 3 2 3
27. (1)证明:由a 3a 2n 2 = 0,可得an+1 + n +1+ = 3 a + n + = 3n+1 n n , 即 ,因为a +1+ = 3,
2 2 3
1
an + n +
2
2
3
所以 an + n + 是以 3 为首项,3 为公比的等比数列.
2
3 bn n 3 n+1 bn 3an + n+ = 3 a
= n n
n = 3 n ba + n n+1
bn = n 3 n
(2)解:由(1)可得: 2 ,所以 2 ;由 n ,得 2 ,
3 3 3
所以bn b1 = (bn bn 1 )+ (bn 1 bn 2 )+ + (b3 b2 )+ (b2 b1 ) = (n 1) 3
n 1 (n 1)+ (n 2) 3n 2 (n 2)+ +1 3
2 2 2
= (n 1) 3n 1 + (n 2) 3n 2
3
+ +1 3 (1+ 2+ + n 1).设T = (n 1) 3n 1 + (n 2) 3n 2 + +1 3,
2
n n n 1 n 2 3 n 3
则3T = (n 1) 3 + (n 2) 3
n 1 + +1 32 ,两式相减得2T = (n 1) 3 (3 +3 + +3) = n 3 + ,
2 2
1 3 n 3 3 3n (n 1) 2n 3 3 3n(n 1)
故T = n 3 +
n
,因为 (1+ 2+ + n 1) = ,所以bn b1 = 3 + , 2 2 4 2 4 4 4 4
3 n 22n 3 3n (n 1) (2n 3) 3 3n + 3n
因为b1 = ,所以bn = 3
n = .
4 4 4 4
d 0 a a a2
2
28.解: (1)设等差数列 的公差为 ,∵ ,且 , 2 , 5 成等比数列,∴ 2 = a1 a5 ,即 (1+ d ) =1+ 4d ,
解得d = 2,∴an =1+ 2(n 1) = 2n 1.
n+1 n
bn b1 = log2 (a2 +1) = log2 4 = 2 bn+1 = 4b
n+1 * b
证明:数列 中, ,∵ n
+ 2
,n N .∴ n+1
+ 2 = 4(bn + 2 ) b1 +2 = 4(2) , .∴
bn + 2n b + 2nn = 4n b = 4nn 2n数列 是等比数列,首项为 4,公比为 4,∴ ,∴ .
a 2k 1 1 3 2k 1
cn = c2k =
k =
* b + 2k k
A = + + +
n = 2k k N 4 c k 2 k(3)①当 时, , k ,∴数列 2k 的前 k项的和 4 4 4 ,
试卷第 9 页,共 11 页
1 1
1
1 1 3 2k 3 2k 1 3 1 1 1 1 2k 1 1
16 4k 1 2k 1
∴ Ak = + + + + ,∴2 3 k k+1 Ak = + 2 + + + = + 2
,
4 4 4 4 4 4 4 42 43 4k k+1 k+1 4 4 1 41
4
5 6k + 5
化为: Ak = .
9 9 4k
3 2k 3 2k 3 2k 3 2k 1 3 1 1
②当n = 2k 1时,cn = = = =
4b 2k+1 + 2 4(4k 2k ) 2k+1 + 2 (2k+1
=
k 1)(2k+1 2) (2k+1 1)(2k 1) k ,数列2 2 1 2k+1 1
3 1 1 1 1 1 1
3 1
c 的前 k项的和Bk = + + + = 1 2k 1 , 2 2 1 2
2 1 22 1 2
3 1 2
k 1 2k+1 1 k+1 2 2 1
5 6n + 5 3 1 37 6n +5 3
数列 cn 的前 2n项的和T2n = + 1 =
9 9 4n 2 2n+1
.
1 18 9 4
n 2n+2 2
29.解:(1)令n = 2,得 S2 3S1 = 2,又 a1 = S1 =1,所以a2 = 4;令n = 3,得 2S3 4S2 =8,又 S2 = 5, a3 = 9;
1 Sn S 1
* (n 1)S (n+1)S = (n3 n)
n 1 =
n 2(n N ) n n 1 n n+1
( )因为当 时, 3 ,所以 ( ) (n 1)n 32 ,
S S 1 1 Sn S1 1 1 1
所以数列 n 为等差数列,首项为
1 = ,公差为 ,所以 = + (n 1) = n+ ,
n (n +1) 2 2 3 n(n+1) 2 3 3 6
1
所以 Sn = n (n+1)(2n+1),于是,当n 2(
1 1
n N* )时,an = Sn Sn 1 = n (n+1)(2n+1) (n 1)n (2n 1) = n2 ,当
6 6 6
2
时,a1 = S1 =1,满足上式,故an = n ;
tan (n+1) tan n
b = tan a = tan n bn+1bn = tan (n+1) tan n = 1
(3)因为 n n ,则 tan1 ,
1 1 1
Tn = ( tan 2 tan1) 1 + ( tan 3 tan 2) 1 + + ( tan (n+1) tan n) 1
于是, tan1 tan1
tan1
1 tan (n+1)
= tan (n+1) tan1 n = n 1 . tan1 tan1
1 n an n 1 1 n 1 n n n 1
30.解:(1) = = , 1= 1= = ( 1) ,
an+1 (n 1)an (n 1)an (n 1) an+1 (n 1)an (n 1) (n 1)an (n 1) (n 1) an
n n +1 b b b
所以bn = b ,所以b = b ,所以
n = n 1 1n 1 b = 3nn+1 n = = = 3, n .
n 1 n n n 1 1
sin 3 sin(b -b
c = = n+1 n
) sin b
= n+1
cosbn sin bn cosbn+1 sin b= n+1
sin b
n
n
cosbn cosbn+1 cosbn cosbn+1 cosbn cosb(2) n+1
cosbn+1 cosbn ,
sin bn+1 sin bn sin bS = c + c + + c = + n
sin b
n 1
sin b2 sin b1
所以 n n n 1 1 + +
cosbn+1 cosbn cosbn cosbn 1 cosb2 cosb1
sin bn+1 sin b1 sin(3n +3) sin 3 sin[(3n + 3) 3] sin 3n= = = = .
cosbn+1 cosb1 cos(3n + 3) cos3 cos(3n +3)cos3 cos(3n +3)cos3
an an+1 anan+1
31.解:(1)由nan (n+1)an+1 = anan+1 两边同除n(n+1)得: = ,两边同除a a 得:n+1 n n(n+1) n n+1
1 1 1 1 1 1 1
= , 则 = ,
(n +1)an+1 nan n(n +1) (n +1)an+1 nan n n +1
试卷第 10 页,共 11 页
1 1 1 1 1 1 1 1
所以 = + + ...+ +
nan nan (n 1)an 1 (n 1)an 1 (n 2)an 2 2a2 a1 a1
1 1 1 1 1 1 1
= + + ...+ +1= 2 ,( )
n 1 n n 2 n 1 1 2 n
1 1 1 1
所以an = ,又 符合an = ,故an = (
2
n Ν ),由bn = 2bn+1 + 3bn+2得:1= 2q+3q ,解得:q = ,
2n 1 2n 1 2n 1 3
n
1
所以b = ( n Ν ). n
3
bn 2n 1
2 n
= 1 1 1
a 3n
Sn =1 +3 + ...+ (2n 1)
(2)∵ n ,∴ 3 3 3 ①
2 3 n+1
1 1 1 1
∴ Sn =1 +3 + ...+ (2n 1) ②
3 3 3 3
2 3 n n+1
2 1 1 1 1 1 1 1 1 1 2 2n+ 2
由①-②得: Sn = + 2 + + ...+ (2n 1) = + (1 ) (2n 1) =
3 3 3 3 3
3 3 3 3n 1 3
n+1 3 3n+1
n+1 n 1 S n 1 n 1 S
S = 1 ( 1) n∴ .则 = ( 1) ,由 ( 1)
n
2n n n 得: 3 n +1 3 n +1
n 1 1 1( 1) 2 ( 1)n 2 ( 1)n + 2
n n n , 3 3 3
1
1
,n为偶数
n n 1 1 1 1
因为 ( 1)
3
= ,n 所以当n为偶数时, (0, ];当n为奇数时, [ ,0) . 3 1 3n 9 3
n 3
,n为奇数
n 3
n 1 1 1 1 1 17 5 17 5
故 ( 1) [ ,0) (0, ].n 所以 2 + 2 ,即 ,故 的取值范围是 , . 3 3 9 9 3 9 3 9 3
试卷第 11 页,共 11 页