2018-2019初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习

2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
一、选择题
1.晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是(  )
A.70≤x≤87.5 B.x≤70或x≥87.5
C.x≤70 D.x≥87.5
【答案】A
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意得:晓明到学校所用的时间为40分到50分之间,路程为3500米,设晓明步行的速度为x米/分, ,解得:70≤x≤87.5;
故答案为:A。
【分析】根据题意晓明到学校所用的时间最少为为40分,最多为50分,根据路程除以时间等于速度即可算出晓明的最大速度及最小速度,从而得出答案。
2.如图,是测量一物体体积的过程:
( 1 )将300mL的水装进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的(  )
A.10cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
【答案】D
【知识点】一元一次不等式组的应用
【解析】【解答】解:设玻璃球的体积为x,
则有 ,可
解得40故一颗玻璃球的体积在40cm3以上,50cm3以下,
故答案为:D.
【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.
3.对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为(  )
A.0<x≤1 B.0≤x<1 C.1<x≤2 D.1≤x<2
【答案】A
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
4.张老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则张老师手中棒棒糖的个数为(  )
A.141 B.142 C.151 D.152
【答案】D
【知识点】一元一次不等式组的特殊解;一元一次不等式组的应用
【解析】【解答】解:设共有x个小朋友,则棒棒糖有3x+59个,再根据最后一个小朋友得到了棒棒糖,但不足3个列出不等式组 ,解得:30.5<x≤31.5.因x为整数,所以x=31,即可得3x+59=152.故答案为:D.
【分析】设共有x个小朋友,则棒棒糖有(3x+59)个, 如果前面每一个小朋友分5个棒棒糖 ,则可以分掉5(x-1)个棒棒糖,由于 最后一个小朋友得到了棒棒糖,但不足3个,可知糖的总数应该不小于[5(x-1)+1]个,同时又小于[5(x-1)+3],从而列出不等式组,求解并取出整数解进而即可算出答案。
5.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为(  )
A.8(x﹣1)<5x+12<8 B.0<5x+12<8x
C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8
【答案】C
【知识点】一元一次不等式的应用
【解析】【解答】解:设有x人,则苹果有(5x+12)个,由题意得:
0<5x+12﹣8(x﹣1)<8,
故答案为:C.
【分析】设有x人,则苹果有(5x+12)个, 若每位小朋友分8个苹果 ,则被分掉的苹果个数是8(x﹣1)个,还剩下苹果的个数为[5x+12﹣8(x﹣1)]个,这些苹果将全部分给最后一个小朋友,根据最后一个小朋友分到苹果但不到8个苹果即可列出不等式组。
6.一种灭虫药粉30kg.含药率是15%.现在要用含药率较高的同种灭虫药粉50kg和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x的范围是(  )
A.15%C.39%【答案】C
【知识点】一元一次不等式组的应用
【解析】【解答】解:先解出30kg和50kg中的灭虫药粉的含药的总量,再除以总数(50+30kg)即可得出含药率,再令其大于30%小于35%

解得:
故答案为:C.
【分析】含药率=纯药的质量÷药粉总质量,关系式为:20%<含药率<35%,把相关数值代入计算即可.
二、填空题
7.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是   .
【答案】 <x≤6
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意有 ,解得 <x≤6.
故x的取值范围是 <x≤6.
故答案为: <x≤6.
【分析】先根据题意列出不等式组,再求解集.
8.定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=2 4-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是   .
【答案】 <x<
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得: .
故答案: <x< .
【分析】先根据题意列出关于x的不等式组,求出x的取值范围即可.确定解集的法则:同大取大;同小取小;大小小大中间找;大大小小找不到.
9.按如下程序进行运算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是   .
【答案】4
【知识点】解一元一次不等式组
【解析】【解答】解:根据题意得:第一次:2x﹣1,
第二次:2(2x﹣1)﹣1=4x﹣3,
第三次:2(4x﹣3)﹣1=8x﹣7,
第四次:2(8x﹣7)﹣1=16x﹣15,
根据题意得:
解得:5<x≤9.
则x的整数值是:6,7,8,9.
共有4个.
故答案是:4.
【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定x的整数值,从而求解.
10.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2
cm,若铁钉总长度为a cm,则a的取值范围是   .
【答案】3【知识点】一元一次不等式组的应用
【解析】【解答】解:第一次为2cm,第二次为1cm,第三次不会超过0.5cm.
设第三次钉入木块的长度为xcm,则0<x≤0.5,
三次钉入的总长度(2+1+x)即为钉子的长,
故钉子的总长度为3<a≤3.5.
故答案为:3<a≤3.5
【分析】由题意可得出a的最大长度为2+1+0.5=3.5cm,以及敲击2次后铁钉进入木块的长度是2+1=3cm,得出最小长度,即可得出答案.
11.(2016八上·海盐期中)已知三个连续自然数之和小于20,则这样的自然数共有   组.
【答案】6
【知识点】一元一次不等式的应用
【解析】【解答】解:设中间自然数为x,
由题意得, ,
解得:1≤x< ,
符合题意的中间自然数有6个,即这样的自然数共有6组.
故答案为:6.
【分析】设中间自然数为x,则x﹣1≥0,3x<20,解不等式,然后找出符合题意的自然数.
12.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为   元/千克.
【答案】10
【知识点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗 ”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
13.(2017七下·泗阳期末)已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c的最大值为m,最小值为n. 则n-m的值为   .
【答案】-2
【知识点】三元一次方程组解法及应用
【解析】【解答】已知,3a+2b+c=4①,2a+b+3c=5②,
②×2 ①得,a+5c=6,a=6 5c,
①×2 ②×3得,b 7c= 7,b=7c 7,
又已知a、b、c为非负实数,
所以,6 5c 0,7c 7 0,
可得, ,
S=5a+4b+7c=5×(6 5c)+4×(7c 7)+7c=10c+2,
所以10 10c 12,
12 10c+2=S 14,
即m=14,n=12,
n m= 2,
故答案为 2.
三、解答题
14.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3,请回答以下问题:
(1)两个语句表达的意思是否一样(不用说明理由)?
(2)把两个语句分别用数学式子表示出来,并选择一个求其解集.
【答案】(1)解:一样
(2)解:①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;
②式子2x﹣1的值不小于1且不大于3可得不等式组
解得:
∴不等式组的解集为:1≤x≤2.
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【分析】(1)关键是分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可;
(2)根据题意可得不等式组,然后求解可解答.
15.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
【答案】(1)解:6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40 x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40 x)= 0.2x+32
(2)解:依题意,得 ,
解得: ,
∴24 x 26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
【知识点】一元一次不等式组的应用
【解析】【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40-x)节,根据总费用=两种车厢的费用和可得出y与x的表达式;
(2)设A型车厢x节,则挂B型车厢(40-x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,求出解集,再求解集内的整数解可得方案.
16.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
【答案】(1)解:设家庭轿车拥有量的年平均增长率为x,
则依题意得:64(1+x)2=100,
解得:x1= =25%,x2=- ,(不合题意,舍去).
∴100(1+25%)==125.
答:该小区到2018年底家庭轿车将达到125辆.
(2)解:设该小区可建室内车位a个,露天车位b个.
则:
由①得:b=150-5a代入②得:20≤a≤ ,
∵a是正整数,∴a=20或21.
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.
【知识点】一元一次不等式组的应用;一元二次方程的实际应用-百分率问题
【解析】【分析】(1)设年平均增长率是x,根据某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆可求出增长率,进而可求出到2018年底家庭轿车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,可列出不等式组求解,进而可求出方案情况.
17.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.
(1)求A、B的进价;
(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?
(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?
【答案】(1)解:设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏,根据题意得

解得x=80,
经检验x=80是原分式方程的解.
则A品牌台灯进价为80元/盏,
B品牌台灯进价为x-30=80-30=50(元/盏),
答:A、B两种品牌台灯的进价分别是80元/盏,50元/盏.
(2)解:设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏,根据题意,有
解得,40≤a≤55.
∵a为整数,
∴该超市有16种进货方案.
(3)解:令超市销售台灯所获总利润记作w,根据题意,有
w=(120-m-80)a+(80-50)(100-a)
=(10-m)a+3000
∵8 m 15
∴①当8<m<10时,即10-m<0,w随a的增大而减小,
故当a=40时,所获总利润w最大,
即A品牌台灯40盏、B品牌台灯60盏;
②当m=10时,w=3000;
故当A品牌台灯数量在40至55间,利润均为3000;
③当10<m<15时,即10-m>0,w随a的增大而增大,
故当a=55时,所获总利润w最大,
即A品牌台灯55盏、B品牌台灯45盏.
【知识点】分式方程的实际应用;一元一次不等式组的应用
【解析】【分析】(1)
设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏, 根据:“1040元购进的A品牌台灯的数量=650元购进的B品牌台灯数量”相等关系,列方程求解可得;
(2) 设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏 ,根据:“3400≤A、B品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;
(3) 令超市销售台灯所获总利润记作w, 利用:总利润=A品牌台灯利润+B品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.
18.(2017·河北模拟)“六一”前夕,某玩具经销商用去2350元购进A,B,C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号 A B C
进价(元/套) 40 55 50
售价(元/套) 50 80 65
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
【答案】(1)解:已知共购进A、B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;
(2)解:由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;
(3)解:①利润=销售收入﹣进价﹣其它费用,
故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,
又∵y=2x﹣30,
∴整理得p=15x+250,
②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,
据题意列不等式组 ,解得20≤x≤ ,
∴x的范围为20≤x≤ ,且x为整数,故x的最大值是23,
∵在p=15x+250中,k=15>0,
∴P随x的增大而增大,
∴当x取最大值23时,P有最大值,最大值为595元.此时购进A、B、C种玩具分别为23套、16套、11套.
【知识点】一元一次不等式组的应用;一次函数的实际应用
【解析】【分析】(1)根据购进A,B,C三种新型的电动玩具工50套,可将C种玩具的表示出来;
(2)根据购进三种玩具所花的应,列出不等式,可将y与x的函数关系;
(3)①利用利润=销售总额-进价总额-支出费用,列出函数关系式即可;②个怒u购进的三种玩具都不少于10套,列出不等式组进行求解.
19.阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。请问灰太狼有几种抓羊方案?
【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.
可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得: ,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【知识点】数轴及有理数在数轴上的表示;一元一次不等式组的应用
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;
(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3) 设抓小羊x只,则老羊为(5-x)只, 根据“ 所抓羊的年龄之和不超过112岁且高于34岁 ”列不等式组,求解.
2018-2019学年初中数学华师大版七年级下册8.3 一元一次不等式组(2)同步练习
一、选择题
1.晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是(  )
A.70≤x≤87.5 B.x≤70或x≥87.5
C.x≤70 D.x≥87.5
2.如图,是测量一物体体积的过程:
( 1 )将300mL的水装进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的(  )
A.10cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
3.对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为(  )
A.0<x≤1 B.0≤x<1 C.1<x≤2 D.1≤x<2
4.张老师把手中一包棒棒糖准备分给幼儿园小班的小朋友,如果每个小朋友分3个棒棒糖,那么还剩59个;如果前面每一个小朋友分5个棒棒糖,则最后一个小朋友得到了棒棒糖,但不足3个.则张老师手中棒棒糖的个数为(  )
A.141 B.142 C.151 D.152
5.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为(  )
A.8(x﹣1)<5x+12<8 B.0<5x+12<8x
C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8
6.一种灭虫药粉30kg.含药率是15%.现在要用含药率较高的同种灭虫药粉50kg和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x的范围是(  )
A.15%C.39%二、填空题
7.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是   .
8.定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=2 4-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是   .
9.按如下程序进行运算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是   .
10.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2
cm,若铁钉总长度为a cm,则a的取值范围是   .
11.(2016八上·海盐期中)已知三个连续自然数之和小于20,则这样的自然数共有   组.
12.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为   元/千克.
13.(2017七下·泗阳期末)已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c的最大值为m,最小值为n. 则n-m的值为   .
三、解答题
14.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3,请回答以下问题:
(1)两个语句表达的意思是否一样(不用说明理由)?
(2)把两个语句分别用数学式子表示出来,并选择一个求其解集.
15.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
16.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
17.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.
(1)求A、B的进价;
(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?
(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?
18.(2017·河北模拟)“六一”前夕,某玩具经销商用去2350元购进A,B,C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示
型 号 A B C
进价(元/套) 40 55 50
售价(元/套) 50 80 65
(1)用含x、y的代数式表示购进C种玩具的套数;
(2)求y与x之间的函数关系式;
(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.
19.阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。请问灰太狼有几种抓羊方案?
答案解析部分
1.【答案】A
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意得:晓明到学校所用的时间为40分到50分之间,路程为3500米,设晓明步行的速度为x米/分, ,解得:70≤x≤87.5;
故答案为:A。
【分析】根据题意晓明到学校所用的时间最少为为40分,最多为50分,根据路程除以时间等于速度即可算出晓明的最大速度及最小速度,从而得出答案。
2.【答案】D
【知识点】一元一次不等式组的应用
【解析】【解答】解:设玻璃球的体积为x,
则有 ,可
解得40故一颗玻璃球的体积在40cm3以上,50cm3以下,
故答案为:D.
【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.
3.【答案】A
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
4.【答案】D
【知识点】一元一次不等式组的特殊解;一元一次不等式组的应用
【解析】【解答】解:设共有x个小朋友,则棒棒糖有3x+59个,再根据最后一个小朋友得到了棒棒糖,但不足3个列出不等式组 ,解得:30.5<x≤31.5.因x为整数,所以x=31,即可得3x+59=152.故答案为:D.
【分析】设共有x个小朋友,则棒棒糖有(3x+59)个, 如果前面每一个小朋友分5个棒棒糖 ,则可以分掉5(x-1)个棒棒糖,由于 最后一个小朋友得到了棒棒糖,但不足3个,可知糖的总数应该不小于[5(x-1)+1]个,同时又小于[5(x-1)+3],从而列出不等式组,求解并取出整数解进而即可算出答案。
5.【答案】C
【知识点】一元一次不等式的应用
【解析】【解答】解:设有x人,则苹果有(5x+12)个,由题意得:
0<5x+12﹣8(x﹣1)<8,
故答案为:C.
【分析】设有x人,则苹果有(5x+12)个, 若每位小朋友分8个苹果 ,则被分掉的苹果个数是8(x﹣1)个,还剩下苹果的个数为[5x+12﹣8(x﹣1)]个,这些苹果将全部分给最后一个小朋友,根据最后一个小朋友分到苹果但不到8个苹果即可列出不等式组。
6.【答案】C
【知识点】一元一次不等式组的应用
【解析】【解答】解:先解出30kg和50kg中的灭虫药粉的含药的总量,再除以总数(50+30kg)即可得出含药率,再令其大于30%小于35%

解得:
故答案为:C.
【分析】含药率=纯药的质量÷药粉总质量,关系式为:20%<含药率<35%,把相关数值代入计算即可.
7.【答案】 <x≤6
【知识点】一元一次不等式组的应用
【解析】【解答】解:依题意有 ,解得 <x≤6.
故x的取值范围是 <x≤6.
故答案为: <x≤6.
【分析】先根据题意列出不等式组,再求解集.
8.【答案】 <x<
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【解答】解:由题意得: .
故答案: <x< .
【分析】先根据题意列出关于x的不等式组,求出x的取值范围即可.确定解集的法则:同大取大;同小取小;大小小大中间找;大大小小找不到.
9.【答案】4
【知识点】解一元一次不等式组
【解析】【解答】解:根据题意得:第一次:2x﹣1,
第二次:2(2x﹣1)﹣1=4x﹣3,
第三次:2(4x﹣3)﹣1=8x﹣7,
第四次:2(8x﹣7)﹣1=16x﹣15,
根据题意得:
解得:5<x≤9.
则x的整数值是:6,7,8,9.
共有4个.
故答案是:4.
【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定x的整数值,从而求解.
10.【答案】3【知识点】一元一次不等式组的应用
【解析】【解答】解:第一次为2cm,第二次为1cm,第三次不会超过0.5cm.
设第三次钉入木块的长度为xcm,则0<x≤0.5,
三次钉入的总长度(2+1+x)即为钉子的长,
故钉子的总长度为3<a≤3.5.
故答案为:3<a≤3.5
【分析】由题意可得出a的最大长度为2+1+0.5=3.5cm,以及敲击2次后铁钉进入木块的长度是2+1=3cm,得出最小长度,即可得出答案.
11.【答案】6
【知识点】一元一次不等式的应用
【解析】【解答】解:设中间自然数为x,
由题意得, ,
解得:1≤x< ,
符合题意的中间自然数有6个,即这样的自然数共有6组.
故答案为:6.
【分析】设中间自然数为x,则x﹣1≥0,3x<20,解不等式,然后找出符合题意的自然数.
12.【答案】10
【知识点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗 ”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
13.【答案】-2
【知识点】三元一次方程组解法及应用
【解析】【解答】已知,3a+2b+c=4①,2a+b+3c=5②,
②×2 ①得,a+5c=6,a=6 5c,
①×2 ②×3得,b 7c= 7,b=7c 7,
又已知a、b、c为非负实数,
所以,6 5c 0,7c 7 0,
可得, ,
S=5a+4b+7c=5×(6 5c)+4×(7c 7)+7c=10c+2,
所以10 10c 12,
12 10c+2=S 14,
即m=14,n=12,
n m= 2,
故答案为 2.
14.【答案】(1)解:一样
(2)解:①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;
②式子2x﹣1的值不小于1且不大于3可得不等式组
解得:
∴不等式组的解集为:1≤x≤2.
【知识点】解一元一次不等式组;一元一次不等式组的应用
【解析】【分析】(1)关键是分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可;
(2)根据题意可得不等式组,然后求解可解答.
15.【答案】(1)解:6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40 x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40 x)= 0.2x+32
(2)解:依题意,得 ,
解得: ,
∴24 x 26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
【知识点】一元一次不等式组的应用
【解析】【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40-x)节,根据总费用=两种车厢的费用和可得出y与x的表达式;
(2)设A型车厢x节,则挂B型车厢(40-x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,求出解集,再求解集内的整数解可得方案.
16.【答案】(1)解:设家庭轿车拥有量的年平均增长率为x,
则依题意得:64(1+x)2=100,
解得:x1= =25%,x2=- ,(不合题意,舍去).
∴100(1+25%)==125.
答:该小区到2018年底家庭轿车将达到125辆.
(2)解:设该小区可建室内车位a个,露天车位b个.
则:
由①得:b=150-5a代入②得:20≤a≤ ,
∵a是正整数,∴a=20或21.
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.
【知识点】一元一次不等式组的应用;一元二次方程的实际应用-百分率问题
【解析】【分析】(1)设年平均增长率是x,根据某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆可求出增长率,进而可求出到2018年底家庭轿车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,可列出不等式组求解,进而可求出方案情况.
17.【答案】(1)解:设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏,根据题意得

解得x=80,
经检验x=80是原分式方程的解.
则A品牌台灯进价为80元/盏,
B品牌台灯进价为x-30=80-30=50(元/盏),
答:A、B两种品牌台灯的进价分别是80元/盏,50元/盏.
(2)解:设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏,根据题意,有
解得,40≤a≤55.
∵a为整数,
∴该超市有16种进货方案.
(3)解:令超市销售台灯所获总利润记作w,根据题意,有
w=(120-m-80)a+(80-50)(100-a)
=(10-m)a+3000
∵8 m 15
∴①当8<m<10时,即10-m<0,w随a的增大而减小,
故当a=40时,所获总利润w最大,
即A品牌台灯40盏、B品牌台灯60盏;
②当m=10时,w=3000;
故当A品牌台灯数量在40至55间,利润均为3000;
③当10<m<15时,即10-m>0,w随a的增大而增大,
故当a=55时,所获总利润w最大,
即A品牌台灯55盏、B品牌台灯45盏.
【知识点】分式方程的实际应用;一元一次不等式组的应用
【解析】【分析】(1)
设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x-30)元/盏, 根据:“1040元购进的A品牌台灯的数量=650元购进的B品牌台灯数量”相等关系,列方程求解可得;
(2) 设超市购进A品牌台灯a盏,则购进B品牌台灯有(100-a)盏 ,根据:“3400≤A、B品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;
(3) 令超市销售台灯所获总利润记作w, 利用:总利润=A品牌台灯利润+B品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.
18.【答案】(1)解:已知共购进A、B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;
(2)解:由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;
(3)解:①利润=销售收入﹣进价﹣其它费用,
故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,
又∵y=2x﹣30,
∴整理得p=15x+250,
②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,
据题意列不等式组 ,解得20≤x≤ ,
∴x的范围为20≤x≤ ,且x为整数,故x的最大值是23,
∵在p=15x+250中,k=15>0,
∴P随x的增大而增大,
∴当x取最大值23时,P有最大值,最大值为595元.此时购进A、B、C种玩具分别为23套、16套、11套.
【知识点】一元一次不等式组的应用;一次函数的实际应用
【解析】【分析】(1)根据购进A,B,C三种新型的电动玩具工50套,可将C种玩具的表示出来;
(2)根据购进三种玩具所花的应,列出不等式,可将y与x的函数关系;
(3)①利用利润=销售总额-进价总额-支出费用,列出函数关系式即可;②个怒u购进的三种玩具都不少于10套,列出不等式组进行求解.
19.【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.
可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得: ,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【知识点】数轴及有理数在数轴上的表示;一元一次不等式组的应用
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;
(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3) 设抓小羊x只,则老羊为(5-x)只, 根据“ 所抓羊的年龄之和不超过112岁且高于34岁 ”列不等式组,求解.

延伸阅读:

标签:

上一篇:河北省武邑中学、景县中学2018-2019高三上学期文数联考数学试卷

下一篇:2018-2019初中数学华师大版七年级下册第九章多边形 单元检测B卷