人教版2023-2024度上学期九年级期末模拟数学试题5(含解析)


人教版2023-2024九年级上期末模拟试题5
考试范围:九上-九下第一章
姓名:__________班级:__________考号:__________总分__________
1 、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
若扇形的圆心角为90°,半径为6,则该扇形的弧长为(  )
A.π B.2π C.3π D.6π
如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为(  )
A.30° B.60° C.90° D.120°
若关于x的一元二次方程x2﹣6x+a=0有两个不相等的实数根,则a的取值范围是(  )
A.a≤9 B.a≥9 C.a<9 D.a>9
如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=35°,则∠AOB的度数为(  )
A.65° B.55° C.45° D.35°
在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为(  )
A.y=(x+3)2+2
B.y=(x﹣1)2+2
C.y=(x﹣1)2+4
D.y=(x+3)2+4
若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为(  )
A.﹣13 B.12 C.14 D.15
如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为(  )
A.1 B. C. D.2
如图所示的两张图片形状大小完全相同,把两张图片全部从中间剪断,再把四张形状大小相同的小图片混合在一起.从四张图片中随机摸取一张,不放回,接着再随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(  )
A. B. C. D.
实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )
A.4860年 B.6480年 C.8100年 D.9720年
如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为(  )
A.(﹣4,﹣5) B.(﹣5,﹣4) C.(﹣3,﹣4) D.(﹣4,﹣3)
若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P(  )
A.有且只有1个
B.有且只有2个
C.至少有3个
D.有无穷多个
如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0,②a+b+c=0,③ac+b+1=0,④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有(  )
A.1个 B.2个 C.3个 D.4个
2 、填空题(本大题共6小题,每小题4分,共24分)
一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为      .
据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.
将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为   .
如图是由边长为1的小正方形组成的9×6网格,点A,B,C,D,E,F,G均在格点上,下列结论:
①点D与点F关于点E中心对称,
②连接FB,FC,FE,则FC平分∠BFE,
③连接AG,则点B,F到线段AG的距离相等.
其中正确结论的序号是    .
如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=,则k的值为   .
如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:
①若C、O两点关于AB对称,则OA=2;
②C、O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为;
其中正确的是   (把你认为正确结论的序号都填上).
3 、解答题(本大题共8小题,共78分)
已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.
(1)求实数k的取值范围.
(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.
如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A.B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.
(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.
某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:
每件售价x/万元 … 24 26 28 30 32 …
月销售量y/件 … 52 48 44 40 36 …
(1)求y与x的函数关系式(不写自变量的取值范围).
(2)该产品今年三月份的售价为35万元/件,利润为450万元.
①求:三月份每件产品的成本是多少万元?
②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.
已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.
为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?
(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
答案解析
1 、选择题
【考点】弧长的计算
【分析】根据弧长公式计算.
解:该扇形的弧长==3π.
故选:C.
【点评】本题考查了弧长的计算:弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).
【考点】旋转的性质.
【分析】根据题意确定旋转中心后即可确定旋转角的大小.
解:如图:
显然,旋转角为90°,
故选C.
【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大. 
【考点】根的判别式.
【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.
解:根据题意得:△=(﹣6)2﹣4a>0,即36﹣4a>0,
解得:a<9,
则a的范围是a<9.
故选:C.
【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键. 
【考点】切线的性质,直角三角形性质
【分析】根据切线性质求出∠OAB=90°,根据直角三角形两锐角互余即可求解.
解:∵AB为⊙O切线,
∴∠OAB=90°,
∵∠B=35°,
∴∠AOB=90°-∠B=55°.
故选:B.
【点评】本题考查了切线的性质,直角三角形性质,熟知相关定理是解题关键.
【考点】二次函数图象与几何变换.
【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
解:将二次函数y=(x+1)2+3的图集向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为y=(x+1﹣2)2+3﹣1,即y=(x﹣1)2+2.
故选:B.
【点评】本题主要考查二次函数的几何变换,掌握“左加右减,上加下减”的法则是解题的关键.
【考点】根与系数的关系.
【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.
解:∵α为2x2﹣5x﹣1=0的实数根,
∴2α2﹣5α﹣1=0,即2α2=5α+1,
∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,
∵α、β为方程2x2﹣5x﹣1=0的两个实数根,
∴α+β=,αβ=﹣,
∴2α2+3αβ+5β=5×+3×(﹣)+1=12.
故选B.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了一元二次方程解的定义.
【考点】反比例函数图象上点的坐标特征,等腰直角三角形
【分析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.
解:∵等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,
∴∠BAC=∠BAO=45°,
∴OA=OB=,AC=,
∴点C的坐标为(,),
∵点C在函数y=(x>0)的图象上,
∴k==1,
故选:A.
【点评】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.
【考点】列表法与树状图法.
【分析】四张形状相同的小图片分别用A.a、B、b表示,其中A和a合成一张完整图片,B和b合成一张完整图片,用列表法或画树状图法可展示所有12种等可能的结果,再找出两张小图片恰好合成一张完整图片的结果数,然后根据概率公式求解即可.
解:四张形状相同的小图片分别用A.a、B、b表示,其中A和a合成一张完整图片,B和b合成一张完整图片,
画树状图如下:
共有12种等可能的结果,其中两张小图片恰好合成一张完整图片的结果数为4,
所以两张小图片恰好合成一张完整图片的概率=.
故选:B.
【点评】本题考查列表法与树状图法:掌握列表法或画树状图求等可能事件概率的方法是解题的关键.
【考点】函数图象,反比例函数的应用
【分析】根据物质所剩的质量与时间的规律,可得答案.
解:由图可知:
1620年时,镭质量缩减为原来的,
再经过1620年,即当3240年时,镭质量缩减为原来的,
再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,
...,
∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,
此时mg,
故选C.
【点评】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.
【考点】等腰直角三角形;中心对称;坐标与图形变化﹣旋转
【分析】先求得直线AB解析式为y=x﹣1,即可得出P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点公式,即可得到点A′的坐标.
解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴A(4,3),
设直线AB解析式为y=kx+b,则

解得,
∴直线AB解析式为y=x﹣1,
令x=0,则y=﹣1,
∴P(0,﹣1),
又∵点A与点A'关于点P成中心对称,
∴点P为AA'的中点,
设A'(m,n),则=0,=﹣1,
∴m=﹣4,n=﹣5,
∴A'(﹣4,﹣5),
故选:A.
【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.
【考点】二次函数图象上点的坐标特征
【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.
解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),
∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a
∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)
∴(x0+4)≠a(x0﹣1)
∴x0=﹣4或x0=1,
∴点P的坐标为(﹣7,0)或(﹣2,﹣15)
故选:B.
【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点
【分析】①由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断,
②根据对称轴是直线x=1,可得b=﹣2a,代入a+b+c,可对②进行判断,
③利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c即可对③作出判断,
④根据抛物线的对称性得到B点的坐标,即可对④作出判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①正确,
∵b=﹣2a,
∴a+b=a﹣a=0,
∵c>0,
∴a+b+c>0,所以②错误,
∵C(0,c),OA=OC,
∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
∴ac﹣b+1=0,所以③错误,
∵A(﹣c,0),对称轴为直线x=1,
∴B(2+c,0),
∴2+c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确,
故选:B.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:一次项系数b和二次项系数a共同决定对称轴的位置:常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c),抛物线与x轴交点个数由△决定,熟练掌握二次函数的性质是关键.
2 、填空题
【考点】概率公式.
【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.
解:∵标号为1,2,3,4,5的5个小球中偶数有2个,
∴P=.
故答案为:.
【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比. 
【考点】解一元二次方程的应用-增长率问题
【分析】根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.
解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值
列方程得:,
故答案为:.
【点评】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.
【考点】二次函数图象与几何变换
【分析】直接利用二次函数的平移规律进而得出答案.
解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,
所得图象的解析式为:y=2(x+1)2﹣2.
故答案为:y=2(x+1)2﹣2.
【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.
【考点】全等三角形的判定与性质,等腰直角三角形性质,中心对称,线段垂直平分线的性质,勾股定理.
【分析】根据中心对称概念,全等三角形判定与性质,点到直线的距离等逐个判断.
解:①连接DF,如图:
由图可知,点D与点F关于点E中心对称,故①正确,
②如图:
由SSS可知△BFC≌△EFC,
∴∠BFC=∠EFC,FC平分∠BFE,故②正确,
③取AG上的格点M,N,连接BM,FN,如图,
由正方形性质可知∠AMB=∠FNG=90°,
∴B到AG的距离为BM的长度,F到AG的距离为FN的长度,
而BM=FN,
∴点B,F到线段AG的距离相等,故③正确,
∴正确结论是①②③,
故答案为:①②③.
【点评】本题考查中心对称,三角形全等的判定与性质,等腰直角三角形性质及应用等,解题的关键是掌握中心对称的概念,能熟练应用全等三角形的判定定理.
【考点】反比例函数与一次函数的交点问题
【分析】根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值,本题得以解决.
解:设点A的坐标为(3a,a),
∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
∴a=3a﹣2,得a=1,
∴1=,得k=3,
故答案为:3.
【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
【考点】三角形综合题.
【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以OA=AC;
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,根据等腰三角形三线合一可知:AB⊥OC;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
解:在Rt△ABC中,∵BC=2,∠BAC=30°,
∴AB=4,AC==2,
①若C、O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则OA=AC=2;
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵∠AOB=∠ACB=90°,
∴OE=CE=AB=2,
当OC经过点E时,OC最大,
则C、O两点距离的最大值为4;
所以②正确;
③如图2,同理取AB的中点E,则OE=CE,
∵AB平分CO,
∴OF=CF,
∴AB⊥OC,
所以③正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,
则: =π.
所以④不正确;
综上所述,本题正确的有:①②③;
故答案为:①②③.
【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中. 
3 、解答题
【考点】根与系数的关系,根的判别式.
【分析】(1)根据一元二次方程x2+3x+k﹣2=0有实数根,可知Δ≥0,即可求得k的取值范围,
(2)根据根与系数的关系和(x1+1)(x2+1)=﹣1,可以求得k的值.
解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,
∴Δ=32﹣4×1×(k﹣2)≥0,
解得k≤,
即k的取值范围是k≤,
(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,
∴x1+x1=﹣3,x1x2=k﹣2,
∵(x1+1)(x2+1)=﹣1,
∴x1x2+(x1+x2)+1=﹣1,
∴k﹣2+(﹣3)+1=﹣1,
解得k=3,
即k的值是3.
【点评】本题考查根与系数的关系、根的判别式,解答本题的关键是明确一元二次方有根时Δ≥0,以及根与系数的关系.
【考点】作图﹣旋转变换;轨迹;作图﹣轴对称变换.
【分析】(1)根据网格结构找出点A.B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据弧长公式列式计算即可得解.
解:(1)如图,B1(3,1);
(2)如图,A1走过的路径长:×2×π×2=π
【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键. 
【考点】二次函数的应用,一元二次方程的应用.
【分析】(1)由待定系数法即可求解,
(2)①设三月的成本为m万元,当x=35时,y=﹣2x+100=30,由题意得:450=30(35﹣m),即可求解,
②由题意得:w=y(x﹣6)=(﹣2x+100)(x﹣6)=﹣2x2+112x﹣600(25≤x≤30),即可求解.
解:(1)在表格取点(30,40)、(32,36),
设一次函数的表达式为:y=kx+b,
则,解得:,
则一次函数的表达式为:y=﹣2x+100,
(2)①设三月的成本为m万元,
当x=35时,y=﹣2x+100=30,
由题意得:450=30(35﹣m),
解得:m=20,
即三月份每件产品的成本是20万元,
②四月份每件产品的成本比三月份下降了14万元,则此时的成本为20﹣14=6,
由题意得:w=y(x﹣6)=(﹣2x+100)(x﹣6)=﹣2x2+112x﹣600(25≤x≤30),
则抛物线的对称轴为x=28,
则x=25时,w取得最小值,
此时,w=950,
即四月份最少利润是950万元.
【点评】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,明确二次函数的相关性质,是解题的关键.
【考点】切线的性质.
【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;
(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.
解:(1)如图①,连接AC,
∵AT是⊙O切线,AB是⊙O的直径,
∴AT⊥AB,即∠TAB=90°,
∵∠ABT=50°,
∴∠T=90°﹣∠ABT=40°,
由AB是⊙O的直径,得∠ACB=90°,
∴∠CAB=90°﹣∠ABC=40°,
∴∠CDB=∠CAB=40°;
(2)如图②,连接AD,
在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°,
∵OA=OD,
∴∠ODA=∠OAD=65°,
∵∠ADC=∠ABC=50°,
∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.
【点评】本题考查了圆的切线、圆周角定理、等腰三角形的性质、三角形的内角和,熟练掌握切线的性质是关键,注意运用同弧所对的圆周角相等.
【考点】扇形统计图,条形统计图,列表法或树状图求概率.
【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;
(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;
(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.
解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;
(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,
补全图形如下:
(3)画树状图为:
共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,
所以书法与乐器组合在一起的概率为=.
【考点】反比例函数与一次函数的交点问题
【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出|x﹣|=2,解之即可得出结论.
解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得,
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出|x﹣|=2.
【考点】全等三角形的判定与性质;等腰直角三角形;旋转的性质
【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
∴△ACD≌△BCE(SAS)
(2)∵∠ACB=90°,AC=BC,
∴∠A=45°,
由(1)可知:∠A=∠CBE=45°,
∵AD=BF,
∴BE=BF,
∴∠BEF=67.5°
【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.
【考点】二次函数综合题.
【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;
(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
解:(1)依题意得:,
解之得:,
∴抛物线解析式为y=﹣x2﹣2x+3
∵对称轴为x=﹣1,且抛物线经过A(1,0),
∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,
得,
解之得:,
∴直线y=mx+n的解析式为y=x+3;
(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.
把x=﹣1代入直线y=x+3得,y=2,
∴M(﹣1,2),
即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);
(3)设P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;
综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).
【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()

延伸阅读:

标签:

上一篇:2023-2024吉林省吉林市舒兰市九年级(上)期末物理试卷(图片版含答案)

下一篇:3.2 水的电离和溶液的PH (含解析)同步练习题 2023-2024高二上学期化学人教版(2019)选择性必修1