25.2 用列举法求概率 基础巩固卷(含答案) 2023--2024人教版九年级数学上册

2023年人教版数学九年级上册
《25.2 用列举法求概率》基础巩固卷
一 、选择题
1.有五张背面完全相同的卡片,正面分别写有(,)0,,,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是( ).
A. B. C. D.
2.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是( )
A. B. C. D.
3.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是( )
A. B. C. D.1
4.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是( ).
A. B. C. D.
5.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是( ).
A. B. C. D.1
6.一个盒子内装有大小、形状相同的4个球,其中有1个红球、1个绿球、2个白球.小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ).
A. B. C. D.
7.一个箱子内装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数字,第2张牌的号码为个位数字,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率是( ).
A. B. C. D.
8.学校团委在“五四”青年节举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动概率是( ).
A. B. C. D.
9.如图所示为一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( ).
A. B. C. D.
10.某电视节目中有一种竞猜游戏,游戏规则如下:
在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。参加这个游戏的观众有三次翻牌的机会。某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ).
A. B. C. D.
二 、填空题
11.一个不透明的口袋中有6个完全相同的小球,现把它们分别标号为1,2,3,4,5,6,并从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .
12.如图所示,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率是 .
13.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为
14.某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A,B,C三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 .
15.如图所示为一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 .
16.如图,一只蚂蚁从点A出发到点D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或向右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从点A出发到达点E处的概率是 .
三 、解答题
17.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.已知红球个数比黑球个数的2倍多40个,从袋中任取一个球是白球的概率是.求:
(1)袋中红球的个数.
(2)从袋中任取一个球是黑球的概率.
18.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两个人打第一场.游戏规则是:三人同时伸“手心、手背”的中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的.请用画树状图的方法求小莹和小芳打第一场的概率.
19.春节,小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.
(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;
(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.
20.4张相同的卡片分别写着数字-1、-3、4、6,将卡片的背面朝上,并洗匀.
(1)从中任意抽取1张,求抽到的数字是奇数的概率;
(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.
21.在一次数学家文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.
22.如图所示,管中放置着三根同样的绳子AA1,BB1,CC1.
(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?
(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
答案
1.B
2.D
3.B
4.B
5.C
6.C
7.A
8.A
9.C
10.B
11.答案为:.
12.答案为:.
13.答案为:.
14.答案为:.
15.答案为:.
16.答案为:.
17.解:(1)口袋中白球的个数为290×=10(个),
设口袋中黑球有x个,则红球有(2x+40)个.
根据题意得x+(2x+40)+10=290,解得x=80.
当x=80时,2x+40=200(个).
∴袋中红球有200个.
(2)80÷290=.
∴从袋中任取一个球是黑球的概率是.
18.解:(1)从三个人中选一个打第一场,每个人被选中的可能性都是相同的,
所以恰好选中大刚的概率是;
(2)画树状图如答图,
所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.
19.解:(1). (2)画树状图如下:
由列表或画树状图可知,共有12种等可能情况,
其中恰好取到“春”“节”两个灯笼的有2种,
∴P(两次恰好取到“春”“节”)==.
20.解:(1) . (2).
21.解:画树状图如下:
由树状图可知,共有12种等可能的结果,抽取的2张牌的数字之和为偶数的结果有4种,所以P(抽取的2张牌的数字之和为偶数)==.
22.解:(1)
(2)列表如下:
所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,
∴P==.

延伸阅读:

标签:

上一篇:重庆市名校联盟2023-2024学年度高一第一期期中联合考试(高2026届) 语文答案

下一篇:贵州省铜仁市石阡县2022-2023六年级上学期期中英语质量监测试题(图片版 无答案 无听力原文及音频)