2022-2023 学年度第一学期期中学业水平测试
九年级数学参考答案
(其他解法参照给分)
一.选择题
题号 1 2 3 4 5 6 7 8
答案 C D C C C B B C
二.填空题
9. x1 0,x2 3; 10. x 3 2 9;11. 3;12. y x 2 2 3 (答案不唯一);
13. (0,﹣4); 14. 圆外; 15. 6 ; 16. 1 ; 17. 4 ; 18. 2 3 或 6 3 .
三.解答题:
19.(1)法一
2
解:x 2x 1.························································(1分)
x2 2x 1 1 1.···················································(2分)
x 1 2 2.························································(3分)
所以 x1 1 2, x2 1 2.·······································(5分)
法二
解:a 1,b 2,c 1.·················································(1分)
b2 4ac 2 2 4 1 1 8.····································(2分)
x b b
2 4ac 2 8
.······································(3分)2a 2 1
所以 x1 1 2, x2 1 2.······································(5分)
(2)解: x 1 2 3.··················································(2分)
x 1 3.·················································(3分)
所以 x1 3 1, x2 3 1.·································(5分)
20.(1)解: x x 5 1.
移项,得 x 5 x 1.··········································(1分)
{#{QQABRYaEggCoAAAAAAhCAwEiCAOQkAEAAAoGwFAMoAABgAFABAA=}#}
等式两边同时平方,得 x 5 x 1 2 .······························(3分)
所以 x1 1,x2 4.···········································(4分)
检验:当 x1 1时,原方程不成立,
所以原方程的解为 x 4.··········································(6分)
(2)言之有理即可.·················································· (8分)
21.证明:∵∠AOC=∠BOD,
∴∠AOC+∠COB= ∠BOD+∠COB.································(2分)
∴∠AOB= ∠COD,················································(6分)
∴AB=CD.························································(8分)
22.(1 2)把点(1,4)和点(2,3)的坐标代入 y x bx c,
1 b c 4;
得
4 2b c 3.
b 2;
解得 ························································ (2分)
c 3.
2
所以二次函数得表达式为: y x 2x 3.··························· (3分)
(2)
····································· (6分)
(3)当 x<1时,y随着 x的增大而增大;
当 x>1时,y随 x的增大而减小;
当 x=1时,y的值最大,最大值是 4.·······························(9分)
23.解:设平均每年增产的百分率为 x.·······································(1分)
2
根据题意,得 17.5 1 x 34.3.····································(6分)
{#{QQABRYaEggCoAAAAAAhCAwEiCAOQkAEAAAoGwFAMoAABgAFABAA=}#}
解这个方程,得 x1 0.4 40%, x2 2.4(不符合题意,舍去).·······(8分)
答:平均每年增产的百分率为 40%.····································(9分)
24.解:(1)正六边形 ABCDEF如图所示:
法一 法二
···································································(5分)
(2)连接 OA,OB,过点 O作 OG⊥AB,垂足为 G,································(6分)
1 1
则∠AOG= ∠AOB=30°,AG= AB=1,·······························(7分)
2 2
OG OA2 AG 2 3.···········································(8分)
正六边形ABCDEFG的面积 6S AOB 6 3 .·······················(10分)
25.解:(1)以桥拱的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建
立平面直角坐标. 抛物线的桥拱是二次函数 y ax2 的图像.
··········································(2分)
因为当拱桥的跨径为 8米时,拱高为 4米,
所以点 A的坐标是(-4,-4),
把 x 4 y 4 2 1, 代入 y ax ,得 a .·······························(4分)4
1 2
∴函数表达式为 y x ··············································(5分)4
1
y=-2 y x2(2)将 代入 得,x 2 2 .··································(8分)4
∵ 2 2 2 2 4 2,6>4 2 ,·····································(9分)
{#{QQABRYaEggCoAAAAAAhCAwEiCAOQkAEAAAoGwFAMoAABgAFABAA=}#}
∴货船无法顺利通过该拱桥.············································(10分)
(解法不唯一,其他解法参照给分)
26.解:(1)直线 BE与⊙O相切.············································(1分)
连接 OD ·························································(2分)
∵CD与⊙O相切于点 D,
∴∠ODE=90°,
∵OE∥AD,
∴∠ADO=∠DOE,∠DAO=∠EOB,
∵OD=OA,
∴∠ADO=∠DAO
∴∠DOE=∠EOB
∵OD=OB,OE=OE,
∴ΔDOE≌ΔBOE(SAS) (4 分)
∴∠OBE=∠ODE=90°,
∵OB是⊙O的半径,
∴直线 BE与⊙O相切; (5 分)
(2)设⊙O的半径为 r,
在 Rt△ODC中,OD 2 DC 2 OC 2 ,
∴ r 2 42 r 2 2 ,
∴r =3. (6 分)
∴AB=2r=6.
∴BC=AC+AB=2+6=8 (7 分)
由(1)得:△DOE≌△BOE,
∴DE=BE .
在 Rt△ BCE 2 2 2中, BC BE CE ,
2
∴8 BE 2 4 DE 2,
2
∴64 DE 4 DE 2 ,
∴DE 6.
∴DE的长为 6. (10分)
27.解:(1)∵抛物线过点 O(0,0)且它的对称轴为直线 x=2,
∴抛物线与 x轴的另一个交点坐标为(4,0).
设抛物线的表达式为 y ax x 4 ,
把 A(5,-5)代入,得 5a = -5,
解得 a = -1,
则 y x x 4 x2 4x.
{#{QQABRYaEggCoAAAAAAhCAwEiCAOQkAEAAAoGwFAMoAABgAFABAA=}#}
2
故此抛物线的表达式为 y x 4x . (3分)
(2)∵点 B是抛物线对称轴上的一点,且点 B在第四象限,
∴设 B(2,m)(m<0).
设直线 OA得解析式为 y kx,
则5k 5,
解得 k 1,
∴直线 OA的解析式为 y x,
设直线 OA与抛物线对称轴交于点 H,则 H(2,﹣2),
∴ BH m 2 .
∵ S 1 OAB 10 ,∴ m 2 5 10,2
∴m 6(正值已舍).
即点 B的坐标为(2,-6). (7 分)
(3)由 PA - PB≤AB可知,当点 P在线段 AB的延长线上时,如图,PA - PB取最大
值,最大值为 AB的长.
设直线 AB的解析式为 y nx d .
5n d 5;
把 A(5,-5),B(2,-6 )分别代入,得
2n d 6.
1
n ; 3
解得
d 20 .
3
1 20
∴直线 AB的解析式为 y x . (9 分)
3 3
x2 4x 1 20 4令 x ,解得 x1 ,x2 5(舍去).3 3 3
y 1 x 20对于 ,
3 3
4 64 4 64
当 x 时, y ,∴P( , ), (10 分)
3 9 3 9
PA - PB=AB= 5 2 2 2此时, 5 6 10 . (12 分)
{#{QQABRYaEggCoAAAAAAhCAwEiCAOQkAEAAAoGwFAMoAABgAFABAA=}#}2022~2023学年度第一学期期中学业水平测试
九年级数学试题
注意事项
1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5亮米黑色字迹签字笔填写本卷和答题卡的指定位凰
3.答案全部涂、写在答题卡上,写在本卷上无效。考试结束后,将答题卡交回
一、
透择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,怡
有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)
1.一元二次方程x(-3x+2)=x+2可以整理成
A.-3x2+3x+2=0B.-3x2+x+2=0C.3x2-x+2=0D.3x2-x-2=0
2.关于x的方程x2-c+k2=3的一个解是2,则k2-2k+3的值是
A.4
B.-4
C.-2
D.2
3.二次函数y=(x-5)-3图像的顶点坐标是
A.(5,3)
B.(-5,3)
C.(5,-3)
D.(-5,-3)
4.下列二次函数中,其图像的对称轴为直线x=2的是
A.y=x2-2
B.y=-x2+2
C.y=-(x-2)2
D.y=(x+2)2
5.如图,在⊙0中,∠A=30°,则CB的度数为
A.30°
B.15°
C.60°
D.40°
6.如图,∠AOB=45°,点C在OB上,OC=4.若以点C为圆心、r为半径的圆与OA相
切,则r等于
A.2
B.2√2
c.25
D.4
7.如图,在半径为4的⊙O中,将劣弧AB沿弦AB翻折,折叠后的AB恰好与OA、OB
相切,则阴影部分的面积为
A.16+4π
B.16-4π
C.4π+8
D.4π-8
九年级数学试题第1页(共6页)
B
(第7题)
(第5题)】
(第6题)
S.二次函数,”=a+(a+3)x+1,当x收互为相反数的任意两个数时,则对应的函数值
y总相等,则a的值为
D.3
A.1
B.-1
C.-3
二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接
填写在答题卡相应位置)
9.一元二次方程x2=-3x的根为
10.将方程x2-6x=0化成(x+m)2=n的形式是
11.若关于x一元二次方程(m+1)x2+4x-2=0两个根相等,则m的值是▲
12.写一个开口向下,顶点坐标为(2,3)的二次函数表达式▲
13.二次函数y=2(x-)(x+2)的图像与y轴的交点坐标为_▲
14.已知⊙0的半径为1cm,点O与点P之间的距离OP=2cm,则点P在」
(填“圆内”、“圆上”或“圆外”)
15.圆锥的底面半径为2,母线长3,它的侧面积为
16.直角三角形的两条直角边分别为4和3,则此三角形内切圆的半径是
17.如图,抛物线y=-x2+4x+a与x轴相交于点A、B,与y轴相交于点C,点D在
抛物线上,且AB∥CD,则线段CD的长为▲,
18.如图,等边△ABC的边长为I2,点O在BC的垂直平分线上,AB、BC所在的直线恰
好与⊙0同时相切,则⊙O的半径为
九年级数学试题第2页(共6页)