2023年秋人教版数学九年级上册25.3用频率估计概率 同步练习
姓名 班级 学号 成绩
一、选择题:(本题共8小题,每小题5分,共40分.)
1.做重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )
A.22% B.44% C.50% D.56%
2.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是( )
A.25 B.20 C.15 D.10
3.小亮做掷质量均匀硬币的试验,掷了10次,发现有8次正面朝上,2次正面朝下,则当他第11次掷这枚硬币时,( )
A.一定是正面朝上 B.一定是正面朝下
C.正面朝上的概率为0.8 D.正面朝上的概率为0.5
4.随机抽检一批毛衫的合格情况,得到如下的频数表.下列说法错误的是( )
抽取件数(件) 100 150 200 500 800 1000
合格频数 a 141 190 475 764 950
合格频率 0.90 0.94 b 0.95 0.955 0.95
A.抽取100件的合格频数是90 B.抽取200件的合格频率是0.95
C.任抽一件毛衫是合格品的概率为0.90 D.出售2000件毛衫,次品大约有100件
5.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为( )
A.150 B.100 C.50 D.200
6.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.
身高
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
7.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球
D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
8.在一个不透明的口袋里,装了只有颜色不同的黄球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到黄球的概率约是( )
摸球的次数n 100 150 200 500 800 1000
摸到黄球的次数m 52 69 96 266 393 507
摸到黄球的频率 0.52 0.46 0.48 0.532 0.491 0.507
A.0.4 B.0.5 C.0.6 D.0.7
二、填空题:(本题共5小题,每小题3分,共15分.)
9.随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是 .
10.记录某球员在罚球线上投篮1000次的结果为投中502次,通过计算投中的频率,估计这名球员投篮一次,投中的概率为 (结果保留一位小数).
11.在进行某批乒乓球的质量检验时,当抽取了2000个乒乓球时,发现优等品有1898个,则这批乒乓球“优等品”的概率的估计值是 (精确到0.01).
12.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同. 小明通过多次实验发现,摸出红球的频率稳定在0.3左右,则袋子中红球的大约有 个.
13.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
抽取瓷砖数 n 100 300 400 600 1000 2000 3000
合格品数 m 96 282 382 570 949 1906 2850
合格品频率 0.960 0.940 0.955 0.950 0.949 0.953 0.950
则这个厂生产的瓷砖是合格品的概率估计值是 (精确到0.01)。
三、解答题:(本题共5题,共45分)
14.如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.
15.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?
16.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40000人次,公园游戏场发放的福娃玩具为10000个.
求参加一次这种游戏活动得到福娃玩具的概率
17.不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,每次从袋中摸1个球,然后放回搅匀再摸,在摸球实验中得到下列表中部分数据.
摸球次数 40 80 120 160 200 240 280 320 360 400
出现红色的成功率 14 23 38 52 67 86 97 111 120 136
出球红色的成功率 35%
32% 33%
35% 35%
(1)将数据表补充完整;
(2)画出折线图;
(3)观察上面的图表可以发现:随着实验次数的增大,出现红色小球的机会是多少?
18.某水果公司以9元千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录.
特级柑橘的售价(元/千克) 14 15 16 17 18
特级柑橘的日销售量(千克) 1000 850 900 850 800
(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为 千克;
(2)按此市场调节的规律来看,若特级柑橘的售价定为16.5元每千克,估计日销售量,并说明理由.
(3)考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘只售完好的柑橘,且售价保持不变,求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.
参考答案:
1.B 2.B 3.D 4.C 5.A 6.C 7.C 8.B
9.
10.0.5
11.
12.6
13.0.95
14.解:(1)可以用计算器生成随机数1,2;1代表正面,2代表反面,则正面朝上的概率是;
(2)摸数量相同的两种颜色的球;一种代表正面,一种代表反面,则正面朝上的概率是;
(3)投骰子分析偶数和奇数出现的概率,偶数代表正面,奇数代表反面,则正面朝上的概率是;
15.解:设白球有x个,根据题意得,
4:(4+x)=1:4,
解得x=12.
答:白球有12个.
16.解:1000÷4000=,∴参加一次这种活动得到的福娃玩具的频率为;
17.解:(1)23÷80=29%;67÷200=33%;
86÷240=36%;120÷360=33%;136÷400=34%;
(2)折线如图所示:
(3)随着实验次数的增大,出现红色小球的频率逐渐稳定到34%左右.
18.(1)9000
(2)解:设特级柑橘的售价为 元 千克,日销售量是 千克,
由表格可知, 是 的一次函数,设 ,把 , 代入得:
,
解得 ,
,
当 时, ,
特级柑橘的售价定为16.5元千克,日销售量是875千克;
(3)解:∵12天内售完这批特级柑橘,
,
解得 ,
设该公司每日销售该特级柑橘的利润为 元,
根据题意得: ,
, ,
当 时, 取最大值,最大值为 元 ,
答:该公司每日销售该特级柑橘可能达到的最大利润是6750元