近三年高考化学真题分类汇编:化学反应与能量(2023年)

近三年高考化学真题分类汇编:化学反应与能量(2023年)
一、选择题
1.(2023·湖南)下列有关电极方程式或离子方程式错误的是
A.碱性锌锰电池的正极反应:MnO2+H2O+e-=MnO(OH)+OH-
B.铅酸蓄电池充电时的阳极反应:Pb2++2H2O-2e-=PbO2+4H+
C.K3[Fe(CN)6]溶液滴入FeCl2溶液中:K++Fe2++[Fe(CN)6]3-=KFe[Fe(CN)6]↓
D.TiCl4加入水中:TiCl4+(x+2)H2O=TiO2·xH2O↓+4H++4Cl-
2.(2023·湖南)油画创作通常需要用到多种无机颜料。研究发现,在不同的空气湿度和光照条件下,颜料雌黄褪色的主要原因是发生了以下两种化学反应:
下列说法正确的是
A.和的空间结构都是正四面体形
B.反应Ⅰ和Ⅱ中,元素和S都被氧化
C.反应Ⅰ和Ⅱ中,参加反应的:Ⅰ<Ⅱ
D.反应Ⅰ和Ⅱ中,氧化转移的电子数之比为3∶7
3.(2023·湖南)葡萄糖酸钙是一种重要的补钙剂,工业上以葡萄糖、碳酸钙为原料,在溴化钠溶液中采用间接电氧化反应制备葡萄糖酸钙,其阳极区反应过程如下:
下列说法错误的是
A.溴化钠起催化和导电作用
B.每生成葡萄糖酸钙,理论上电路中转移了电子
C.葡萄糖酸能通过分子内反应生成含有六元环状结构的产物
D.葡萄糖能发生氧化、还原、取代、加成和消去反应
4.(2023·辽宁)某无隔膜流动海水电解法制的装置如下图所示,其中高选择性催化剂可抑制产生。下列说法正确的是
A.b端电势高于a端电势
B.理论上转移生成
C.电解后海水下降
D.阳极发生:
5.(2023·辽宁)某工厂采用如下工艺制备,已知焙烧后元素以价形式存在,下列说法错误的是
A.“焙烧”中产生
B.滤渣的主要成分为
C.滤液①中元素的主要存在形式为
D.淀粉水解液中的葡萄糖起还原作用
6.(2023·辽宁)某低成本储能电池原理如下图所示。下列说法正确的是
A.放电时负极质量减小
B.储能过程中电能转变为化学能
C.放电时右侧通过质子交换膜移向左侧
D.充电总反应:
7.(2023·辽宁)一定条件下,酸性溶液与发生反应,(Ⅱ)起催化作用,过程中不同价态含粒子的浓度随时间变化如下图所示。下列说法正确的是
A.(Ⅲ)不能氧化
B.随着反应物浓度的减小,反应速率逐渐减小
C.该条件下,(Ⅱ)和(Ⅶ)不能大量共存
D.总反应为:
8.(2023·辽宁)科技是第一生产力,我国科学家在诸多领域取得新突破,下列说法错误的是
A.利用CO2合成了脂肪酸:实现了无机小分子向有机高分子的转变
B.发现了月壤中的“嫦娥石[(Ca8Y)Fe(PO4)7]”:其成分属于无机盐
C.研制了高效率钙钛矿太阳能电池,其能量转化形式:太阳能→电能
D.革新了海水原位电解制氢工艺:其关键材料多孔聚四氟乙烯耐腐蚀
9.(2023·湖北)2023年5月10日,天舟六号货运飞船成功发射,标志着我国航天事业进入到高质量发展新阶段。下列不能作为火箭推进剂的是
A.液氮-液氢 B.液氧-液氢 C.液态-肼 D.液氧-煤油
10.(2023·湖北)下列化学事实不符合“事物的双方既相互对立又相互统一”的哲学观点的是
A.石灰乳中存在沉淀溶解平衡
B.氯气与强碱反应时既是氧化剂又是还原剂
C.铜锌原电池工作时,正极和负极同时发生反应
D.Li、Na、K的金属性随其核外电子层数增多而增强
11.(2023·湖北)工业制备高纯硅的主要过程如下:
石英砂粗硅高纯硅
下列说法错误的是
A.制备粗硅的反应方程式为
B.1molSi含Si-Si键的数目约为
C.原料气HCl和应充分去除水和氧气
D.生成的反应为熵减过程
12.(2023·湖北)我国科学家设计如图所示的电解池,实现了海水直接制备氢气技术的绿色化。该装置工作时阳极无生成且KOH溶液的浓度不变,电解生成氢气的速率为。下列说法错误的是
A.b电极反应式为
B.离子交换膜为阴离子交换膜
C.电解时海水中动能高的水分子可穿过PTFE膜
D.海水为电解池补水的速率为
13.(2023·全国乙卷)室温钠-硫电池被认为是一种成本低、比能量高的能源存储系统。一种室温钠-硫电池的结构如图所示。将钠箔置于聚苯并咪唑膜上作为一个电极,表面喷涂有硫黄粉末的炭化纤维素纸作为另一电极。工作时,在硫电极发生反应:S8+e-→S,S+e-→S,2Na++S+2(1-)e-→Na2Sx
下列叙述错误的是
A.充电时Na+从钠电极向硫电极迁移
B.放电时外电路电子流动的方向是a→b
C.放电时正极反应为:2Na++S8+2e-→Na2Sx
D.炭化纤维素纸的作用是增强硫电极导电性能
14.(2023·全国乙卷)下列应用中涉及到氧化还原反应的是
A.使用明矾对水进行净化 B.雪天道路上撒盐融雪
C.暖贴中的铁粉遇空气放热 D.荧光指示牌被照发光
15.(2023·全国乙卷)一些化学试剂久置后易发生化学变化。下列化学方程式可正确解释相应变化的是
A 硫酸亚铁溶液出现棕黄色沉淀
B 硫化钠溶液出现浑浊颜色变深
C 溴水颜色逐渐褪去
D 胆矾表面出现白色粉末
A.A
B.B
C.C
D.D
16.(2023·新课标卷)“肼合成酶”以其中的配合物为催化中心,可将与转化为肼(),其反应历程如下所示。
下列说法错误的是
A.、和均为极性分子
B.反应涉及、键断裂和键生成
C.催化中心的被氧化为,后又被还原为
D.将替换为,反应可得
17.(2023·新课标卷)一种以和为电极、水溶液为电解质的电池,其示意图如下所示。放电时,可插入层间形成。下列说法错误的是
A.放电时为正极
B.放电时由负极向正极迁移
C.充电总反应:
D.充电阳极反应:
18.(2023·新课标卷)根据实验操作及现象,下列结论中正确的是
选项 实验操作及现象 结论
常温下将铁片分别插入稀硝酸和浓硝酸中,前者产生无色气体,后者无明显现象 稀硝酸的氧化性比浓硝酸强
取一定量样品,溶解后加入溶液,产生白色沉淀。加入浓,仍有沉淀 此样品中含有
将银和溶液与铜和溶液组成原电池。连通后银表面有银白色金属沉积,铜电极附近溶液逐渐变蓝 的金属性比强
向溴水中加入苯,振荡后静置,水层颜色变浅 溴与苯发生了加成反应
A.A
B.B
C.C
D.D
19.(2023·全国甲卷)用可再生能源电还原时,采用高浓度的抑制酸性电解液中的析氢反应来提高多碳产物(乙烯、乙醇等)的生成率,装置如下图所示。下列说法正确的是
A.析氢反应发生在电极上
B.从电极迁移到电极
C.阴极发生的反应有:
D.每转移电子,阳极生成气体(标准状况)
20.(2023·浙江1月选考)在熔融盐体系中,通过电解和获得电池材料,电解装置如图,下列说法正确的是
A.石墨电极为阴极,发生氧化反应
B.电极A的电极反应:
C.该体系中,石墨优先于参与反应
D.电解时,阳离子向石墨电极移动
21.(2023·浙江1月选考)关于反应,下列说法正确的是
A.生成,转移电子
B.是还原产物
C.既是氧化剂又是还原剂
D.若设计成原电池,为负极产物
二、非选择题
22.(2023·湖南)聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。
(1)Ⅰ.苯乙烯的制备
已知下列反应的热化学方程式:



计算反应④的   ;
(2)在某温度、下,向反应器中充入气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75%,需要向反应器中充入   水蒸气作为稀释气(计算时忽略副反应);
(3)在、下,以水蒸气作稀释气。作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:


以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的选择性S()随乙苯转化率的变化曲线如图所示,其中曲线b代表的产物是   ,理由是   ;
(4)关于本反应体系中催化剂的描述错误的是____;
A.X射线衍射技术可测定晶体结构
B.可改变乙苯平衡转化率
C.降低了乙苯脱氢反应的活化能
D.改变颗粒大小不影响反应速率
(5)Ⅱ.苯乙烯的聚合
苯乙烯聚合有多种方法,其中一种方法的关键步骤是某(Ⅰ)的配合物促进(引发剂,X表示卤素)生成自由基,实现苯乙烯可控聚合。
引发剂中活性最高的是   ;
(6)室温下,①在配体L的水溶液中形成,其反应平衡常数为K;②在水中的溶度积常数为。由此可知,在配体L的水溶液中溶解反应的平衡常数为   (所有方程式中计量系数关系均为最简整数比)。
23.(2023·湖南)超纯是制备第三代半导体的支撑源材料之一,近年来,我国科技工作者开发了超纯纯化、超纯分析和超纯灌装一系列高新技术,在研制超纯方面取得了显著成果,工业上以粗镓为原料,制备超纯的工艺流程如下:
已知:①金属的化学性质和相似,的熔点为;
②(乙醚)和(三正辛胺)在上述流程中可作为配体;
③相关物质的沸点:
物质
沸点/ 55.7 34.6 42.4 365.8
回答下列问题:
(1)晶体的晶体类型是   ;
(2)“电解精炼”装置如图所示,电解池温度控制在的原因是   ,阴极的电极反应式为   ;
(3)“合成”工序中的产物还包括和,写出该反应的化学方程式:   ;
(4)“残渣”经纯水处理,能产生可燃性气体,该气体主要成分是   ;
(5)下列说法错误的是____;
A.流程中得到了循环利用
B.流程中,“合成”至“工序X”需在无水无氧的条件下进行
C.“工序X”的作用是解配,并蒸出
D.用核磁共振氢谱不能区分和
(6)直接分解不能制备超纯,而本流程采用“配体交换”工艺制备超纯的理由是   ;
(7)比较分子中的键角大小:   (填“>”“<”或“=”),其原因是   。
24.(2023·辽宁)硫酸工业在国民经济中占有重要地位。
(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、   和   (填化学式)。
(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:
NO2+SO2+H2O=NO+H2SO4
2NO+O2=2NO2
(ⅰ)上述过程中NO2的作用为   。
(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是   (答出两点即可)。
(3)接触法制硫酸的关键反应为SO2的催化氧化:
SO2(g)+O2(g)SO3(g) ΔH=-98.9kJ·mol-1
(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是   。
a.温度越高,反应速率越大
b.α=0.88的曲线代表平衡转化率
c.α越大,反应速率最大值对应温度越低
d.可根据不同下的最大速率,选择最佳生产温度
(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是   (填标号)。
(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数式表示上述催化氧化反应的Kp=   (用平衡分压代替平衡浓度计算)。
25.(2023·辽宁)某工厂采用如下工艺处理镍钴矿硫酸浸取液含(和)。实现镍、钴、镁元素的回收。
已知:
物质
回答下列问题:
(1)用硫酸浸取镍钴矿时,提高浸取速率的方法为   (答出一条即可)。
(2)“氧化”中,混合气在金属离子的催化作用下产生具有强氧化性的过一硫酸,中过氧键的数目为   。
(3)“氧化”中,用石灰乳调节,被氧化为,该反应的离子方程式为   (的电离第一步完全,第二步微弱);滤渣的成分为、   (填化学式)。
(4)“氧化”中保持空气通入速率不变,(Ⅱ)氧化率与时间的关系如下。体积分数为   时,(Ⅱ)氧化速率最大;继续增大体积分数时,(Ⅱ)氧化速率减小的原因是   。
(5)“沉钴镍”中得到的(Ⅱ)在空气中可被氧化成,该反应的化学方程式为   。
(6)“沉镁”中为使沉淀完全,需控制不低于   (精确至0.1)。
26.(2023·湖北) 是生产多晶硅的副产物。利用对废弃的锂电池正极材料进行氯化处理以回收Li、Co等金属,工艺路线如下:
回答下列问题:
(1)Co位于元素周期表第   周期,第   族。
(2)烧渣是LiCl、和的混合物,“500℃焙烧”后剩余的应先除去,否则水浸时会产生大量烟雾,用化学方程式表示其原因   。
(3)鉴别洗净的“滤饼3”和固体常用方法的名称是   。
(4)已知,若“沉钴过滤”的pH控制为10.0,则溶液中浓度为   。“850℃煅烧”时的化学方程式为   。
(5)导致比易水解的因素有   (填标号)。
a.Si-Cl键极性更大 b.Si的原子半径更大
c.Si-Cl键键能更大 d.Si有更多的价层轨道
27.(2023·湖北)学习小组探究了铜的氧化过程及铜的氧化物的组成。回答下列问题:
(1)铜与浓硝酸反应的装置如下图,仪器A的名称为   ,装置B的作用为   。
(2)铜与过量反应的探究如下:
实验②中Cu溶解的离子方程式为   ;产生的气体为   。比较实验①和②,从氧化还原角度说明的作用是   。
(3)用足量NaOH处理实验②新制的溶液得到沉淀X,元素分析表明X为铜的氧化物,提纯干燥后的X在惰性氛围下加热,mgX完全分解为ng黑色氧化物Y,。X的化学式为   。
(4)取含X粗品0.0500g(杂质不参加反应)与过量的酸性KI完全反应后,调节溶液至弱酸性。以淀粉为指示剂,用标准溶液滴定,滴定终点时消耗标准溶液15.00mL。(已知:,)标志滴定终点的现象是   ,粗品中X的相对含量为   。
28.(2023·湖北)纳米碗是一种奇特的碗状共轭体系。高温条件下,可以由分子经过连续5步氢抽提和闭环脱氢反应生成。的反应机理和能量变化如下:
回答下列问题:
(1)已知中的碳氢键和碳碳键的键能分别为和,H-H键能为。估算的   。
(2)图示历程包含   个基元反应,其中速率最慢的是第   个。
(3) 纳米碗中五元环和六元环结构的数目分别为   、   。
(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,该反应的平衡常数为   (用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(5) 及反应的(为平衡常数)随温度倒数的关系如图所示。已知本实验条件下,(R为理想气体常数,c为截距)。图中两条线几乎平行,从结构的角度分析其原因是   。
(6)下列措施既能提高反应物的平衡转化率,又能增大生成的反应速率的是   (填标号)。
a.升高温度 b.增大压强 c.加入催化剂
29.(2023·全国乙卷)LiMn2O4作为一种新型锂电池正极材料受到广泛关注。由菱锰矿(MnCO3,含有少量Si、Fe、Ni、Al等元素)制备LiMn2O4的流程如下:
已知:Ksp[Fe(OH)3]=2.8×10-39,Ksp[Al(OH)3]=1.3×10-33,Ksp[Ni(OH)2]=5.5×10-16。
回答下列问题:
(1)硫酸溶矿主要反应的化学方程式为   。为提高溶矿速率,可采取的措施   (举1例)。
(2)加入少量MnO2的作用是   。不宜使用H2O2替代MnO2,原因是   。
(3)溶矿反应完成后,反应器中溶液pH=4,此时c(Fe3+)=   mol·L-1;用石灰乳调节至pH≈7,除去的金属离子是   。
(4)加入少量BaS溶液除去Ni2+,生成的沉淀有   。
(5)在电解槽中,发生电解反应的离子方程式为   。随着电解反应进行,为保持电解液成分稳定,应不断   。电解废液可在反应器中循环利用。
(6)缎烧窑中,生成LiMn2O4反应的化学方程式是   。
30.(2023·全国乙卷)硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:
(1)在气氛中,的脱水热分解过程如图所示:
根据上述实验结果,可知   ,   。
(2)已知下列热化学方程式:
则的   。
(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。平衡时的关系如下图所示。时,该反应的平衡总压   、平衡常数   。随反应温度升高而   (填“增大”“减小”或“不变”)。
(4)提高温度,上述容器中进一步发生反应(Ⅱ),平衡时   (用表示)。在时,,则   ,   (列出计算式)。
31.(2023·新课标卷)铬和钒具有广泛用途。铬钒渣中铬和钒以低价态含氧酸盐形式存在,主要杂质为铁、铝、硅、磷等的化合物,从铬钒渣中分离提取铬和钒的一种流程如下图所示:
已知:最高价铬酸根在酸性介质中以存在,在碱性介质中以存在。
回答下列问题:
(1)煅烧过程中,钒和铬被氧化为相应的最高价含氧酸盐,其中含铬化合物主要为   (填化学式)。
(2)水浸渣中主要有和   。
(3)“沉淀”步骤调到弱碱性,主要除去的杂质是   。
(4)“除硅磷”步骤中,使硅、磷分别以和的形式沉淀,该步需要控制溶液的以达到最好的除杂效果,若时,会导致   ;时,会导致   。
(5)“分离钒”步骤中,将溶液调到1.8左右得到沉淀,在时,溶解为或在碱性条件下,溶解为或,上述性质说明具有_______(填标号)。
A.酸性 B.碱性 C.两性
(6)“还原”步骤中加入焦亚硫酸钠()溶液,反应的离子方程式为   。
32.(2023·全国甲卷) 是一种压电材料。以为原料,采用下列路线可制备粉状。
回答下列问题:
(1)“焙烧”步骤中碳粉的主要作用是   。
(2)“焙烧”后固体产物有、易溶于水的和微溶于水的。“浸取”时主要反应的离子方程式为   。
(3)“酸化”步骤应选用的酸是   (填标号)。
a.稀硫酸 b.浓硫酸 c.盐酸 d.磷酸
(4)如果焙烧后的产物直接用酸浸取,是否可行?   ,其原因是   。
(5)“沉淀”步骤中生成的化学方程式为   。
(6)“热分解”生成粉状钛酸钡,产生的   。
33.(2023·全国甲卷)甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
(1)已知下列反应的热化学方程式:


反应③的   ,平衡常数   (用表示)。
(2)电喷雾电离等方法得到的(等)与反应可得。与反应能高选择性地生成甲醇。分别在和下(其他反应条件相同)进行反应,结果如下图所示。图中的曲线是   (填“a”或“b”。、时的转化率为   (列出算式)。
(3) 分别与反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以示例)。
(ⅰ)步骤Ⅰ和Ⅱ中涉及氢原子成键变化的是   (填“Ⅰ”或“Ⅱ”)。
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则与反应的能量变化应为图中曲线   (填“c”或“d”)。
(ⅲ)与反应,氘代甲醇的产量   (填“>”“<”或“=”)。若与反应,生成的氘代甲醇有   种。
34.(2023·浙江1月选考)“碳达峰·碳中和”是我国社会发展重大战略之一,还原是实现“双碳”经济的有效途径之一,相关的主要反应有:
Ⅰ:
Ⅱ:
请回答:
(1)有利于提高平衡转化率的条件是   。
A.低温低压B.低温高压C.高温低压D.高温高压
(2)反应的   ,   (用表示)。
(3)恒压、时,和按物质的量之比投料,反应经如下流程(主要产物已标出)可实现高效转化。
①下列说法正确的是   。
A.可循环利用,不可循环利用
B.过程ⅱ,吸收可促使氧化的平衡正移
C.过程ⅱ产生的最终未被吸收,在过程ⅲ被排出
D.相比于反应Ⅰ,该流程的总反应还原需吸收的能量更多
②过程ⅱ平衡后通入,测得一段时间内物质的量上升,根据过程ⅲ,结合平衡移动原理,解释物质的量上升的原因   。
(4)还原能力可衡量转化效率,(同一时段内与的物质的量变化量之比)。
①常压下和按物质的量之比投料,某一时段内和的转化率随温度变化如图1,请在图2中画出间R的变化趋势,并标明时R值   。
②催化剂X可提高R值,另一时段内转化率、R值随温度变化如下表:
温度/℃ 480 500 520 550
转化率/% 7.9 11.5 20.2 34.8
R 2.6 2.4 2.1 1.8
下列说法错误的是   
A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率
B.温度越低,含氢产物中占比越高
C.温度升高,转化率增加,转化率降低,R值减小
D.改变催化剂提高转化率,R值不一定增大
答案解析部分
1.【答案】B
【知识点】电极反应和电池反应方程式;离子方程式的书写
【解析】【解答】A、碱性锌锰电池的正极反应式为MnO2+e-+H2O=MnO(OH)+OH-,A不符合题意;
B、铅蓄电池充电时的阳极反应式为PbSO4-2e-+2H2O=PbO2+4H++SO42-,B符合题意;
C、K3[Fe(CN)6]与FeCl2溶液反应的离子方程式为:K++Fe2++[Fe(CN)6]3-=KFe[Fe(CN)6]↓,C不符合题意;
D、TiCl4与H2O反应的离子方程式为:TiCl4+(x+2)H2O=TiO2·xH2O↓+4H++4Cl-,D不符合题意;
故答案为:B
【分析】A、碱性锌锰电池中MnO2为正极发生得电子的还原反应,生成MnO(OH);
B、铅蓄电池充电时阳极PbSO4发生失电子的氧化反应,生成PbO2;
C、K3[Fe(CN)6]与FeCl2反应生成KFe[Fe(CN)6]沉淀;
D、TiCl4与水反应生成TiO2·xH2O。
2.【答案】D
【知识点】判断简单分子或离子的构型;氧化还原反应;氧化还原反应方程式的配平;氧化还原反应的电子转移数目计算
【解析】【解答】A、S2O32-中心硫原子的价层电子对数为,因此S2O32-为四面体型,但不是正四面体,SO42-中心硫原子的价层电子对数为,因此SO42-为正四面体结构,A不符合题意;
B、反应Ⅰ中As元素化合价不变,S元素化合价由-2价变为+2价,化合价升高,S元素被氧化;反应Ⅱ中As元素由+3价变为+5价,化合价升高,As元素被氧化,S元素有-2价变为+6价,化合价升高,S元素被氧化,B不符合题意;
C、反应Ⅰ的化学方程式为2As2S3+6O2+3H2O=2As2O3+3H2S2O3,参加反应的,反应Ⅱ的化学方程式为As2S3+7O2+6H2O=2H3AsO4+3H2SO4,参加反应的,因此反应Ⅰ和反应Ⅱ中参加反应的:Ⅰ>Ⅱ,C不符合题意;
D、反应Ⅰ中氧化1molAs2S3转移的电子数为1mol×3×4=12mol,反应Ⅱ中氧化1molAs2S3转移电子数为1mol×(2×2+3×8)=28mol,因此其转移电子数之比为12mol:28mol=3:7,D符合题意;
故答案为:D
【分析】A、计算中心原子的价层电子对数,从而确定其空间结构;
B、根据反应过程中As元素和S元素化合价的变化分析,若化合价升高,则被氧化;
C、根据反应Ⅰ、反应Ⅱ的化学方程式进行分析即可;
D、根据反应过程中化合价的变化计算转移电子数。
3.【答案】B
【知识点】乙醇的化学性质;消去反应;电解池工作原理及应用;氧化还原反应的电子转移数目计算
【解析】【解答】A、阳极上Br-转化为Br2,Br2转化为HBrO,HBrO转化为Br-,因此NaBr起到催化剂作用;同时NaBr溶液提供了自由移动的离子,起导电作用,A不符合题意;
B、每生成1mol葡萄糖酸钙,需要消耗2mol葡萄糖分子,因此转移电子数为4mol,B符合题意;
C、羟基发生脱水成醚的反应,可生成个环状醚,C不符合题意;
D、葡萄糖中的醛基可发生氧化反应、还原反应、加成反应,羟基可发生取代反应和消去反应,D不符合题意;
故答案为:B
【分析】A、根据阳极上溴元素的转化分析;
B、每生成1mol葡萄糖酸钙,需消耗2mol葡萄糖分子,据此计算转移电子数;
C、羟基发生脱水反应,可形成环状醚结构;
D、根据葡萄糖结构中含有的羟基、醛基进行分析。
4.【答案】D
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.由分析可知,a为正极,b电极为负极,则a端电势高于b端电势,A错误;
B.右侧电极上产生氢气的电极方程式为:2H++2e-=H2↑,则理论上转移2mol电子生成2g氢气,B错误;
C.由图可知,该装置的总反应为电解海水的装置,随着电解的进行,海水的浓度增大,但是其pH基本不变,C错误;
D.由图可知,阳极上的电极反应为:,D正确;
故答案为:D
【分析】由图可知,左侧电极产生氧气,则左侧电极为阳极,电极a为正极,右侧电极为阴极,b电极为负极,该装置的总反应产生氧气和氢气,相当于电解水,解答即可。
5.【答案】B
【知识点】氧化还原反应;物质的分离与提纯;制备实验方案的设计
【解析】【解答】A.铁、铬氧化物与碳酸钠和氧气反应时生成对应的钠盐和二氧化碳,A正确;
B.焙烧过程铁元素被氧化,滤渣的主要成分为氢氧化铁,B错误;
C.滤液①中Cr元素的化合价是+6价,铁酸钠遇水水解生成氢氧化铁沉淀溶液显碱性,所以Cr 元素主要存在形式为CrO42-,C正确;
D.由分析知淀粉水解液中的葡萄糖,含有醛基,起还原作用,D正确;
故答案为:B
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。
6.【答案】B
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.放电时负极上Pb失电子结合硫酸根离子生成PbSO4附着在负极上,负极质量增大,A错误;
B.该装置为电解池,将电能转化为化学能,B正确;
C.放电时,右侧为正极,电解质溶液中的阳离子向正极移动,左侧的H+通过质子交换膜移向右侧,C错误;
D.充电时,总反应为PbSO4+2Fe2+=Pb+SO42-+2Fe3+,D错误;
故答案为:B
【分析】该储能电池放电时,Pb为负极,失电子结合硫酸根离子生成PbSO4,则多孔碳电极为正极,正极上Fe3+得电子转化为Fe2+,充电时,多孔碳电极为阳极,Fe2+失电子生成Fe3+,PbSO4电极为阴极,PbSO4得电子生成Pb和硫酸。
7.【答案】C
【知识点】氧化还原反应;氧化还原反应方程式的配平;化学反应速率的影响因素
【解析】【解答】A.由图像可知,随着时间的推移Mn(III)的浓度先增大后减小,说明开始反应生成Mn(III),后Mn(III)被消耗生成Mn(II),Mn(III)能氧化H2C2O4,A项错误;
B.随着反应物浓度的减小,后面生成Mn(II)对反应起催化作用,反应速率会增大,B项错误;
C.由图像可知,Mn(VII)的浓度为0后才开始生成Mn(II),该条件下Mn(II)和Mn(VII)不能大量共存,C项正确;
D.H2C2O4为弱酸,写离子反应时不能拆;
【分析】开始一段时间(大约13min前)随着时间的推移Mn(VII)浓度减小直至为0,Mn(III)浓度增大直至达到最大值,结合图像,此时间段主要生成Mn(III),同时先生成少量Mn(IV)后Mn(IV)被消耗;后来(大约13min后)随着时间的推移Mn(III)浓度减少,Mn(II)的浓度增大;据此作答。
8.【答案】A
【知识点】化学反应中能量的转化;高分子材料
【解析】【解答】A.脂肪酸为小分子有机物,不属于高分子有机物;A项错误;
B.嫦娥石因其含有Y、Ca、Fe等元素,又因含有磷酸根,是无机盐,B正确;
C.钙钛矿太阳能电池可以将太阳能转化为电能,C正确;
D.聚四氟乙烯塑料塑料,耐酸、耐碱,不会被含水腐蚀,D正确;
故答案为:A。
【分析】易错分析:A.注意区分高分子与小分子化合物的区别,高分子化合物一般分子量几万到几十万不等。
9.【答案】A
【知识点】常见能量的转化及运用
【解析】【解答】 能作为火箭推进剂的必须满足:1.反应速率要快;2.短时间能放出大量的热,液氮和液氢反应非常困难,不能做作为火箭的推进剂。
故答案为:A.
【分析】要弄清楚火箭推进剂的要求,要快速反应且放出大量的热,根据反应特点进行解答即可。
10.【答案】D
【知识点】氧化还原反应;难溶电解质的溶解平衡及沉淀转化的本质;原电池工作原理及应用
【解析】【解答】A.当沉淀速率和溶解速率相等时,电解质建立了沉淀溶解平衡,沉淀和溶解即对立又互相统一,符合 事物的双方既相互对立又相互统一 ,A项正确;
B.氯气与强碱反应时,有部分氯气发生氧化反应,同时也有部分氯气发生还原反应,因此,氯气既是氧化剂又是还原剂,氯气的这两种作用统一在同一反应中,这个化学事实符合“事物的双方既相互对立又相互统一”的哲学观点,B正确;
C.铜锌原电池工作时,正极和负极同时发生反应,正极上发生还原反应,负极上发生氧化反应,氧化反应和还原反应是对立的,但是这两个反应又同时发生,统一在原电池反应中,因此,这个化学事实符合“事物的双方既相互对立又相互统一”的哲学观点,C正确;
D.Li、Na、K均为第ⅠA的金属元素,其核外电子层数依次增多,原子核对最外层电子的吸引力逐渐减小,其失电子能力依次增强,因此,其金属性随其核外电子层数增多而增强,这个化学事实不符合“事物的双方既相互对立又相互统一”的哲学观点,D项错误;
故答案为:D.
【分析】弄清题目的意思,“ 既相互对立又相互统一 ”,结合化学知识与理论进行判断,有对立和同一的思想即可。
11.【答案】B
【知识点】原子晶体(共价晶体);晶胞的计算;氧化还原反应方程式的配平
【解析】【解答】A.有分析可知,高温下,二氧化硅和C反应生成单质硅,反应方程式:,A项正确;
B. 在晶体硅中,每个Si与其周围的4个Si形成共价键并形成立体空间网状结构,因此,平均每个Si形成2个共价键, 1mol Si含Si-Si键的数目约为2NA,B项错误;
C. HCl易与水形成盐酸,在一定的条件下氧气可以将HCl氧化;HCI在高温下遇到氧气能发生反应生成水,且其易燃易爆,C项正确;
D.该反应是气体分子数减少的反应,因此,生成SiHCI3的反应为熵减过程,D说法正确;
故答案为:B。
【分析】易错分析:B.在计算单质硅或者金刚石中Si-Si键或者C-C键时,要注意每个共价键被两个原子共用,平均到每个原子的共价键时要乘以。
12.【答案】D
【知识点】电极反应和电池反应方程式;原电池工作原理及应用
【解析】【解答】A.b电极反应式为b电极为阴极,发生还原反应,电极反应为2H2O+2e-=H2↑+2OH-,故A正确;
B.该装置工作时阳极无Cl2生成且KOH浓度不变,阳极发生的电极反应为4OH--4e-=O2↑+2H2O,为保持OH-离子浓度不变,则阴极产生的OH-离子要通过离子交换膜进入阳极室,即离子交换膜应为阴离子交换摸,故B正确;
C.电解时电解槽中不断有水被消耗,海水中的动能高的水可穿过PTFE膜,为电解池补水,故C正确;
D.由电解总反应可知,每生成1molH2要消耗1molH2O,生成H2的速率为,则补水的速率也应是,故D错误;
故答案为:D。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
13.【答案】A
【知识点】电极反应和电池反应方程式;原电池工作原理及应用
【解析】【解答】A.充电时为电解池装置,阳离子移向阴极,即钠电极,故充电时,Na+由硫电极迁移至钠电极,A错误;
B.放电时,为原电池,负极失电子,即为Na电极,正极得电子,即为单质S,所以电子由a流向b,B项正确;
C.根据题目给出硫电极发生的反应,S8最终变成Na2Sx,电极反应为:,C项正确;
D. 面喷涂有硫黄粉末的炭化纤维素纸 ,碳纤维具有导电性,可以增强电极导电能力,D项正确;
故答案为:A。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
14.【答案】C
【知识点】氧化还原反应
【解析】【解答】A.使用明矾对水进行净化过程中,明矾发生水解生成氢氧化铝胶体,氢氧化铝胶体粒子吸附水中的悬浮颗粒并沉降下来从而达到净水目的,因此没有涉及到氧化还原反应,A错误;
B.雪天道路上撒盐融雪,是因为雪遇到盐而使其熔点降低并熔化,属于物理变化,B项错误;
C.暖贴中的铁粉遇空气放热,是因为暖贴中含有的铁粉、碳粉、氯化钠溶液等物质,这些物质遇到空气后形成原电池,将化学能转化为电能,同时放出热量,铁元素化合价发生改变,属于氧化还原反应,C项正确;
D.荧光指示牌被照发光,是因为光被指示牌发生了反射,属于物理现象,D项错误;
故答案为:C。
【分析】判断该过程是否为氧化还原反应的依据:判断反应前后是否有化合价的升降,若有化合价的改变,则为氧化还原反应,反之则不是。
15.【答案】D
【知识点】氧化还原反应方程式的配平
【解析】【解答】A.硫酸亚铁溶液出现棕黄色沉淀,硫酸亚铁久置后易被氧气氧化,化学方程式为:12FeSO4+3O2+6H2O=4Fe2(SO4)3+4Fe(OH)3↓,A错误;
B.硫化钠中S为-2价,具有还原性,可以被氧气氧化为相邻价态的单质S,化学方程式为: 2 Na2S + O2 + 2 H2O = 4 NaOH + 2 S↓,B错误
C.溴水的主要成分是溴和水,发生反应为:Br2+H2O=HBrO+HBr,2HBrO=2HBr+O2,所以溴水放置太久会变质,C错误;
D.胆矾为CuSO4·5H2O,颜色为蓝色,如果表面失去结晶水,则变为白色的CuSO4,化学方程式为:CuSO4·5H2O= CuSO4+5H2O,方程式正确,D正确;
故答案为:D。
【分析】易错分析:B.含硫化合物之间的相互转化,一般反应生成相邻价态的含硫物质;如-2价硫一般氧化得到单质S。
16.【答案】D
【知识点】极性分子和非极性分子;氧化还原反应
【解析】【解答】A.根据定义可知,电荷分布不均匀,不对称,为极性分子,NH2OH,NH3,H2O的电荷分布都不均匀;A项正确;
B.根据反应过程可知,反应涉及N-H、N-O键断裂和N-N键形成,B项正确;
C.根据反应历程可知,Fe2+先被氧化为Fe3+,又被还原为Fe2+,C项正确;
D.由反应历程可知,反应过程中,生成的NH2NH2有两个氢来源于NH3,所以将NH2OH替换为ND2OD,得到ND2NH2和HDO,D项错误;
故答案为:D。
【分析】解答关于反应历程的题目思路:弄清楚反应化学键的断裂和形成,以及元素化合键的变化即可进行解答。
17.【答案】C
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.根据化合价升降可知,该电池中Zn为负极;为正极,A项正确;
B.电解质溶液阴阳离子移动的方向为:阳正阴负,B项正确;
C.放电时总反应为:,放电与充电时相反的,所以反应为:,C项错误;
D.充电阳极上,氧化为,根据化合价变化可知,阳极反应为:,D项正确;
故答案为:C。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
18.【答案】C
【知识点】硝酸的化学性质;苯酚的性质及用途;原电池工作原理及应用
【解析】【解答】A.常温下,铁片与浓硝酸会发生钝化,导致现象不明显,稀硝酸与铁会产生气泡,所以不能通过该实验现象比较浓硝酸和稀硝酸的氧化性强弱,A错误;
B.浓硝酸会氧化亚硫酸根生成硫酸根,也会产生白色沉淀,所以不能通过该实验现象判断样品中含有硫酸根,B错误;
C.在形成原电池过程中,活泼金属做负极,发生氧化反应,生成了铜离子,溶液变为蓝色,所以该实验可以比较铜和银的金属性强弱,C正确;
D.溴水和苯发生萃取,从而使溴水褪色,不是发生加成反应,D项错误;
故答案为:C。
【分析】易错分析:B.进行硫酸根或者亚硫酸根检验时,不能用硝酸酸化,一般用盐酸酸化。
C.一般原电池负极活泼型大于正极,可以进行金属活泼性判断。
19.【答案】C
【知识点】电极反应和电池反应方程式;原电池工作原理及应用;电解池工作原理及应用
【解析】【解答】A.析氢反应为还原反应,与直流电源正极相连的IrOx-Ti电极为电解池的阳极,水在阳极失去电子发生氧化反应生成氧气和氢离子,电极反应式为2H2O-4e-=O2↑+4H+,故A错误;
B.离子交换膜为质子交换膜,只允许氢离子通过,Cl-不能通过,故B错误;
C.铜电极为阴极,酸性条件下二氧化碳在阴极得到电子发生还原反应生成乙烯、乙醇等,电极反应式为2CO2+12H++12e =C2H4+4H2O、2CO2+12H++12e =C2H5OH+3H2O,故C正确;
D.电极反应式为2H2O-4e-=O2↑+4H+,每转移1mol电子,生成0.25molO2,在标况下体积为5.6L,故D错误;
故答案为:C。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。
(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。
(3)充电电池→放电时为原电池→失去电子的一极为负极。
(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
20.【答案】C
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.由图可知,在外加电源下石墨电极上C转化为CO,失电子发生氧化反应,则石墨电极为阳极,选项A不符合题意;
B.由上述分析可知,电极A为阴极,电极反应为,选项B不符合题意;
C. 石墨电极中碳失去电子,因此该体系中,石墨优先于参与反应,选项C符合题意;
D.电解时,阳离子向阴极移动,石墨电极为阳极,则阳离子向阴极电极A移动,选项D不符合题意;
故答案为:C。
【分析】电解和获得电池材料,则电极A为阴极,电极反应式应为,石墨电极为阳极,电极反应式为C-2e-+O2-=CO↑。
21.【答案】A
【知识点】氧化还原反应
【解析】【解答】A.NH2OH中N元素的化合价由-1价升高到+1价,反应生成1mol一氧化二氮,转移4mol电子,故A符合题意;
B.由上述分析可知,NH2OH是反应的还原剂,故B不符合题意;
C.由上述分析可知,NH2OH是反应的还原剂,铁离子是反应的氧化剂,故C不符合题意;
D.由方程式可知,反应中铁元素的化合价降低被还原,铁离子是反应的氧化剂,若设计成原电池,铁离子在正极得到电子发生还原反应生成亚铁离子,亚铁离子为正极产物,故D不符合题意;
故答案为:A。
【分析】 中,NH2OH中N元素的化合价由-1价升高到+1价,失去电子,作还原剂,Fe3+的化合价由+3价降低到+2价,得到电子,作氧化剂。
22.【答案】(1)+118
(2)5
(3)苯;反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯
(4)B;D
(5)C6H5CH2Cl
(6)K Ksp
【知识点】盖斯定律及其应用;催化剂;化学平衡常数;化学平衡的影响因素;化学平衡的计算
【解析】【解答】(1)根据盖斯定律可得,该反应的反应热ΔH4=ΔH1-ΔH2-ΔH3=(-4386.9kJ·mol-1)-(-4263.1kJ·mol-1)-(-241.8kJ·mol-1)=118kJ·mol-1,因此该反应的反应热ΔH4=+118kJ·mol-1。
(2)当乙苯的平衡转化率为50%时,参与反应的n(乙苯)=0.5mol,可得平衡三段式如下:
因此平衡时混合气体的总物质的量n(总)=0.5mol+0.5mol+0.5mol=1.5mol,设此时容器的体积为V,则可得该温度下反应的平衡常数。
当乙苯的平衡转化率为75%时,参与反应的n(乙苯)=1mol×75%=0.75mol,可得平衡三段式如下:
因此平衡时混合气体的总物质的量n(总)=0.25mol+0.75mol+0.75mol=1.75mol。设加入n(水蒸气)=amol,此时容器的体积为V′,由于物质的量之比等于体积之比,因此可得,解得。此时反应的平衡常数
因为反应温度不变,因此平衡常数不变,所以可得,解得a=5。所以加入水蒸气的物质的量为5mol。
(3)反应④为主反应,随着乙苯转化率的增大,反应生成苯乙烯和氢气的量增多,体系的压强增大。而反应⑥中反应前后气体分子数不变,压强增大,平衡不移动。反应⑤中反应后气体分子数增大,压强增大后,反应⑤平衡逆向移动,苯的产量降低,因此曲线b表示的产物是苯。
(4)A、测定晶体结构的方法为X射线衍射技术,A不符合题意;
B、Fe2O3为反应的催化剂,加入催化剂,不影响平衡移动,因此不可改变乙苯的平衡转化率,B符合题意;
C、Fe2O3为反应的催化剂,加入催化剂可降低乙苯脱氢反应的活化能,C不符合题意;
D、改变Fe2O3的颗粒大小,可改变固体与气体的接触面积,从而改变反应速率,D符合题意;
故答案为:BD
(5)由于非金属性Cl>Br>I,氯原子吸引电子的能力更强,则形成自由基C6H5CH2·的能力越强,因此活性最高的是C6H5CH2Cl。
(6)Cu+在配体L的水溶液中反应的离子方程式为:Cu+(aq)+2L(aq) [Cu(L)2]+(aq),该反应的平衡常数。CuBr的沉淀溶解平衡反应为CuBr(s) Cu+(aq)+Br-(aq),该反应的平衡常数Ksp=c(Cu+)×c(Br-)。CuBr与L反应的方程式为CuBr(s)+2L(aq)=[Cu(L)2]+(aq)+Br-(aq),该反应的平衡常数。由于,所以K′=K·Ksp。
【分析】(1)根据盖斯定律计算目标反应的反应热。
(2)温度不变,则平衡常数不变,根据三段式结合平衡常数的表达式进行计算。
(3)随着乙苯转化率增大,体系的压强增大,结合压强对反应⑤、反应⑥平衡移动的影响分析。
(4)A、测定晶体结构,可用X射线衍射实验;
B、催化剂只改变反应速率,不改变平衡移动;
C、加入催化剂,可降低反应所需的活化能;
D、增大催化剂的接触面积,可增大反应速率;
(5)根据卤素原子吸引电子的能力强弱分析。
(6)CuBr与L反应的方程式为CuBr(s)+2L(aq) [Cu(L)2]+(aq)+Br-(aq),据此结合平衡常数的表达式进行计算。
23.【答案】(1)分子晶体
(2)保证Ga为液体,便于纯Ga流出;Ga3++3eˉ=Ga
(3)8CH3I+2Et2O+Ga2Mg5=2+3+2
(4)CH4
(5)D
(6)NR3沸点较高,易与Ga(CH3)3分离,Et2O的沸点低于Ga(CH3)3,一起气化,难以得到超纯Ga(CH3)3
(7)>;Ga(CH3)3中Ga为sp2杂化,所以为平面结构,而Ga(CH3)3(Et2O)中Ga为sp3杂化,所以为四面体结构,故夹角较小
【知识点】分子晶体;物质的分离与提纯;制备实验方案的设计;化学实验方案的评价;电解池工作原理及应用
【解析】【解答】(1)晶体Ga(CH3)3的沸点为55.7℃,比水的沸点还低,因此属于分子晶体。
(2)电解精炼过程是为了制取高纯Ga,由于Ga的熔点为29.8℃,因此控制温度在40~45℃是为了使电解生成的Ga为液态,便于Ga的分离。电解过程中,阴极上Ga3+发生得电子的还原反应,生成Ga,该电极的电极反应式为:Ga3++3e-=Ga。
(3)“合成Ga(CH3)3(Et2O)”工序中往Ga2Mg5中加入CH3I、Et2O,反应生成Ga(CH3)3(Et2O)、MgI2和CH3MgI,该反应的化学方程式为:Ga2Mg5+8CH3I+2Et2O=2Ga(CH3)3(Et2O)+3MgI2+2CH3MgI。
(4)“残渣”中含有反应后生成的CH3MgI,经水处理过程中,能与H2O发生水解反应,生成CH4、HI和Mg(OH)2,其中属于可燃性气体的为CH4。
(5)A、流程中“配体交换”工序中反应生成了Et2O,因此流程中Et2O可循环利用,A不符合题意;
B、Ga2Mg5能与H2O反应,Ga(CH3)3(Et2O)能与H2O和O2反应,因此流程中”合成Ga2Mg5”至“工序X”都需在无水、无氧的条件下进行,B不符合题意;
C、“配体交换”工序中反应生成了Ga(CH3)3(NR3),经“工序X”后得到Ga(OH)3,因此“工序X”的作用是解配Ga(CH3)3(NR3),并蒸出Ga(OH)3,C不符合题意;
D、Ga(CH3)3、CH3I二者都只含有一种氢原子,但其在核磁共振氢谱中,化学位移不同,因此可通过核磁共振氢谱进行鉴别,D符合题意;
故答案为:D
(6)NR3的沸点较高,易与Ga(CH3)3分离;而Et2O的沸点低于Ga(CH3)3,在Et2O转化为气态的同时,Ga(CH3)3也是气态,难以得到超纯的Ga(CH3)3。因此本流程中采用了“配体交换”工艺。
(7)Ga(CH3)3中Ga采用sp2杂化,为平面型结构;而Ga(CH3)3(Et2O)中Ga为sp3杂化,为四面体结构。所以键角Ga(CH3)3大于Ga(CH3)3(Et2O)。
【分析】(1)Ga(CH3)3的沸点较低,属于分子晶体。
(2)结合Ga的沸点为29.8℃可知,温度在40~45℃时,Ga为液态。阴极上Ga3+发生得电子的还原反应,生成Ga单质。
(3)根据流程确定反应物和生成物,结合原子守恒书写反应的化学方程式。
(4)“残渣”的成分为CH3MgI,经水处理的过程中CH3MgI与H2O发生水解反应。
(5)A、“配体交换”过程中,生成了Et2O;
B、Ga2Mg5、CH3MgI都易与H2O、O2发生反应;
C、“配体交换”后得到Ga(CH3)3(NR3),经工序X后得到Ga(CH3)3;
D、二者核磁共振氢谱的化学位移不同,可鉴别;
(6)Et2O的沸点低于Ga(CH3)3,在蒸出Et2O的同时,Ga(CH3)3也为气态,一起蒸出。而NR3的沸点较高,易与Ga(CH3)3分离。
(7)结合Ga(OH)3、Ga(CH3)3(Et2O)的结构判断二者键角的大小。
24.【答案】(1)CuO;SO3
(2)催化剂;反应中有污染空气的NO和NO2放出影响空气环境、NO2可以溶解在硫酸中给产物硫酸带来杂质、产率不高(答案合理即可)
(3)cd;d;
【知识点】热化学方程式;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)根据图示的热重曲线所示,在700℃左右会出现两个吸热峰,说明此时CuSO4发生热分解反应,从TG图像可以看出,质量减少量为原CuSO4质量的一半,说明有固体CuO剩余,还有其他气体产出,此时气体产物为SO2、SO3、O2;
(2)(i)根据所给的反应方程式,NO2在反应过程中线消耗再生成,说明NO2在反应中起催化剂的作用;(ii)铅室法被接触法代替因为在反应中有污染空气的NO和NO2放出影响空气环境;
(3)(i)a.根据不同转化率下的反应速率曲线可以看出,随着温度的升高反应速率先加快后减慢,a错误
b.从图中所给出的速率曲线可以看出,相同温度下,转化率越低反应速率越快,但在转化率小于88%的时的反应速率图像并没有给出,无法判断α=0.88的条件下是平衡转化率,b错误;
c.从图像可以看出随着转化率的增大,最大反应速率不断减小,最大反应速率出现的温度也逐渐降低,c正确;
d.从图像可以看出随着转化率的增大,最大反应速率出现的温度也逐渐降低,这时可以根据不同转化率选择合适的反应温度以减少能源的消耗,d正确;
故答案为:cd;
(ii)从图中可以看出标号为d的催化剂V-K-Cs-Ce对SO2的转化率最好,产率最佳,故答案选d;
(iii)利用分压代替浓度计算平衡常数,反应的平衡常数:
设SO2初始量为xmol,则平衡时n(SO2)=x·αe,n(SO3)=x-x·αe=x(1-αe);带入Kp可得;
【分析】难点分析:(2)平衡图像解题技巧:对应化学反应速率图像和化学平衡图像,应该注意下列几点:1、横轴坐标和纵坐标含义;2、曲线斜率或者趋势;3、曲线上特殊点,如起点、终点、交点和拐点等;4、根据需要运用辅助线,如等温线、等压线等。
25.【答案】(1)适当增大硫酸浓度或适当升高温度或将镍钴矿粉碎增大接触面积
(2)NA
(3);Fe(OH)3
(4)9.0%;SO2有还原性,过多将会降低 的浓度,降低 (Ⅱ)氧化速率
(5)
(6)11.1
【知识点】氧化还原反应方程式的配平;化学反应速率的影响因素;难溶电解质的溶解平衡及沉淀转化的本质;物质的量的相关计算
【解析】【解答】(1)增大硫酸浓度、升高温度或将镍钴矿粉碎增大接触面积等,都可以提高化学反应速率
(2)根据H2SO5的结构,1个分子含有有个-O-O-键,所以1molH2SO5含有过氧键数目为NA
(3)Mn2+被H2SO3为二氧化锰,离子反应为:,在pH=4时,滤渣有二氧化锰和氢氧化铁;
(4)4)根据图示可知二氧化硫体积分数为0.9%时,Mn(Ⅱ)氧化速率最大;继续增大二氧化硫体积分数时,由于SO2有还原性,过多将会降低H2SO5的浓度,降低Mn(Ⅱ)氧化速率;
(5)“沉钻镍”中得到的Co(OH)2,在空气中可被氧化成CoO(OH),该反应的化学方程式为:
(6)氢氧化镁的Ksp=10-10.8, 当镁离子完全沉淀时,c(Mg2+)=10-5mol/L,根据Ksp可计算c(OH-)=10-2.9mol/L,根据Kw=10-14,c(H+)=10-11.1mol/L,所以溶液的pH=11.
【分析】流程题的一般思路是:
浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。要抓住一个关键点:一切反应或操作都是为获得产品而服务。
26.【答案】(1)4;Ⅷ
(2)
(3)焰色反应
(4);
(5)abd
【知识点】氧化还原反应方程式的配平;难溶电解质的溶解平衡及沉淀转化的本质;焰色反应;元素周期表的结构及其应用
【解析】【解答】(1)Co是27号元素,元素周期表第8、9、10三个纵行合称第Ⅷ族,因此,其位于元素周期表第4周期、第Ⅷ族;
(2)四氯化硅与可水反应且能生成氯化氢和硅酸,故其原因是:四氯化硅遇水剧烈水解,生成硅酸和氯化氢,该反应的化学方程式:;
(3)常用焰色反应鉴别和,的焰色反应为紫红色,而的焰色反应为黄色。
(4)若“沉钴过滤”的pH控制为10.0,则溶液中OH-浓度为:,则Co2+浓度为:,
(5)850℃煅烧”时,Co(OH)2与O2反应生成Co3O4和水,反应方程式为:
(5)a.Si-Cl键极性更大,则 Si-Cl键更易断裂,因此,比易水解,a正确;
b.Si的原子半径更大,因此,中的共用电子对更加偏向于氯,从而导致Si-Cl键极性更大因此,比易水解,b正确;
c.C原子半径硅原子半径,C-Cl键长能比Si-Cl键长短,C-Cl键长能比Si-Cl键长大,c不正确;
d.Si有更多的价层轨道,因此更易与水电离的OH-形成化学键,从而导致比易水解,d正确;
【分析】由流程和题中信息可知,粗品LiCoO2与在500℃焙烧时生成氧气和烧渣,烧渣是LiCl、和的混合物;烧渣经水浸、过滤后得滤液1和滤饼1,滤饼1的主要成分是和;滤液1用氢氧化钠溶液沉钴,过滤后得滤饼2和滤液2(主要溶质为LiCl);滤饼2置于空气中在850℃煅烧得到;滤液2经碳酸钠溶液沉锂,得到滤液3和滤饼3,滤饼3为。
27.【答案】(1)具支试管;防倒吸
(2)Cu+H2O2+2H+= Cu2++2H2O;O2;既不是氧化剂,又不是还原剂
(3)CuO2
(4)溶液蓝色消失,且半分钟不恢复原来的颜色;72%
【知识点】氧化还原反应;氧化还原反应方程式的配平;化学方程式的有关计算;化学式及其计算
【解析】【解答】(1)由图可知,仪器A的名称为具支试管;铜和浓硝酸反应生成硝酸铜和二氧化氮,其中二氧化氮易溶于水,需要防倒吸,则装置B的作用为防倒吸;
(2)根据实验现象,铜片溶解,溶液变蓝,可知在酸性条件下铜和过氧化氢发生反应,生成硫酸铜,离子方程式为:Cu+H2O2+2H+= Cu2++2H2O,产生的气体为氧气,从化合价升降角度分析,H+既不是氧化剂也不是还原剂;
(3)设X的化学式为:CuOx,分解后生成的黑色物质为CuO,反应前后根据铜元素守恒,可得,解的x=2,所以X的化学式为:CuO2
(4)滴定结束的时候,单质碘消耗完,则标志滴定终点的现象是:溶液蓝色消失,且半分钟不恢复原来的颜色;在CuO2中铜为+2价,氧为-1价,根据反应方程式,可以得到关系式:,则n(CuO2)=×0.1mol/L×0.015L=0.000375mol,粗品中X的相对含量为
【分析】第(1)本实验目的是探究 铜的氧化过程及铜的氧化物的组成 ,铜与浓硝酸反应,铜被浓硝酸氧化,产生NO2气体,该气体极易溶于水且有毒,需要防止倒吸,并用氢氧化钠溶液吸收;
第(2)为探究铜与过氧化氢溶液反应原理探究,铜与过氧化氢溶液不直接反映,但是加入稀硫酸后,反应生成硫酸铜和氧气;
第(3)是探究氢氧化与硫酸铜反应生成铜氧化物探究;
第(4)为氧化还原反应滴定,找到被滴定物质与标准溶液关系即可计算。
28.【答案】(1)+128
(2)3;3
(3)6;10
(4)
(5)在反应过程中,断裂和形成的化学键相同
(6)a
【知识点】反应热和焓变;活化能及其对化学反应速率的影响;化学平衡常数;化学平衡的计算
【解析】【解答】(1)和反应历程可以看出,中断裂了2根碳氢键,形成了1根碳碳键和形成一个H-H键,所以该过程反应热为:
(2)由反应历程可知,包含3个基元反应;其中第三个的活化能最大,反应速率最慢;
(3)由的结构分析,可知其中含有1个五元环,10个六元环,每脱两个氢形成一个五元环,脱氢过程中六元环数目不变,则总共含有6个五元环,10个六元环;
(4)反应过程中压强恒定为P0(即的初始压强),平衡转化率为α,设起始量为1mol,则根据信息列出三段式为
可得平衡时各物质分压:,,
带入压强平衡常数表达式:,可得
(5)图中两条线几乎平行,说明斜率几乎相等,根据(R为理想气体常数,c为截距)可知,斜率相等,则说明焓变相等,因为在反应过程中,断裂和形成的化学键相同;
(6)a.由反应历程可知,该反应为吸热反应,升温,反应正向进行,提高了平衡转化率反应速率也加快,a正确;
b.由化学方程式可知,该反应为正向体积增大的反应,加压,反应逆向进行,降低了平衡转化率
b不正确;
c.加入催化剂,平衡不移动,不能提高平衡转化率,c不正确;
【分析】(1)根据结构,有机物结构很复杂,只需要弄清楚反应断开和形成化学键即可,利用断开化学键吸收的能量减去形成化学键释放能量即可;
(2)根据反应历程可知,有几个峰就有几个历程,峰越高,代表基元反应活化能越大,越难进行;
(3)有分析可知,脱氢过程六元环数目不变,每脱去2个H形成一个五元环;
(4)根据三段式,求出各物质平衡时物质的量,计算物质的量分数,求出分压,带入压强平衡表达式即可;
(5)根据直线方程可知,斜率代表反应热,二者的斜率基本相同,数目两个反应热相同,进而说明反应断开和形成化学键数目相同
(6)根据化学平衡移动原理以及化学反应速率影响因素进行判断即可。
29.【答案】(1)MnCO3+H2SO4=MnSO4+H2O+CO2↑;粉碎菱锰矿
(2)将Fe2+氧化为Fe3+;Fe3+可以催化H2O2分解
(3)2.8×10-9;Al3+
(4)BaSO4、NiS
(5)Mn2++2H2O H2↑+MnO2↓+2H+;加入MnSO4
(6)2Li2CO3+8MnO2 4LiMn2O4+2CO2↑+O2↑
【知识点】氧化还原反应方程式的配平;化学反应速率的影响因素;难溶电解质的溶解平衡及沉淀转化的本质
【解析】【解答】(1)加入硫酸后可以与碳酸锰反应,硫酸溶矿主要反应的化学方程式为:MnCO3+H2SO4=MnSO4+H2O+CO2↑;为提高溶矿速率,可以将菱锰矿粉碎,增大接触面积;
(2) MnO2具有氧化性,可以将Fe2+氧化为Fe3+,由于H2O2不稳定且Fe3+可以催化H2O2分解,所以不能用H2O2 进行氧化;
(3反应器中溶液pH=4,此时溶液中c(OH-)=1.0×10-10mol·L-1, 此时c(Fe3+)=,用石灰乳调节至pH≈7,溶液中c(OH-)=1.0×10-7mol·L-1,溶液中c(Al3+)=1.3×10-12mol·L-1,c(Ni2+)=5.5×10-4mol·L-1,c(Al3+)小于1.0×10-5,Al3+沉淀完全;
(4)加入少量BaS溶液除去Ni2+,溶液中发生的离子反应为:BaS+Ni2++SO42-=BaSO4↓+NiS↓,
(5)电解池溶液中阴极为Mn2+放电,阳极为H2O放电,电解总反应为:Mn2++2H2OH2↑+MnO2↓+2H+,电解过程中锰离子不断被消耗,为保持电解液成分稳定,需要补充MnSO4;
(6)煅烧窑中MnO2与Li2CO3发生反应生成LiMn2O4,反应的化学方程式为:2Li2CO3+8MnO24LiMn2O4+2CO2↑+O2↑。
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等。
30.【答案】(1)4;1
(2)(a+c-2b)
(3)3;2.25;增大
(4);46.26;
【知识点】盖斯定律及其应用;化学平衡常数;化学反应速率与化学平衡的综合应用;化学平衡的计算
【解析】【解答】(1)由图中信息可知,当失重比为19.4%时;变成,失去的为水的质量,可得,解的x=4,同理,当失重比为38.8%时,经过计算可得y=1;
(2)根据盖斯定律可知,①+③-②x2可得目标方程式,则
(3)通过图像可知,在温度为660K时,即为a点,=1.5KPa;由于SO3:SO2=1:1,=1.5KPa;
那么总压强为:3KPa;该反应压强平衡常数为:,由图中信息可知随着温度增大儿增大,所以Kp也增大;
(4)由于仅发生反应(Ⅰ)时=,当有反应(II)时,则有,整理可得
,在929K时,P总=84.6kPa,=35.7kPa,又有,联立解的,代入数据可得,=46.26kPa,,那么
【分析】解题技巧分析:平衡图像解题技巧:对应化学反应速率图像和化学平衡图像,应该注意下列几点:1、横轴坐标和纵坐标含义;2、曲线斜率或者趋势;3、曲线上特殊点,如起点、终点、交点和拐点等;4、根据需要运用辅助线,如等温线、等压线等。
31.【答案】(1)Na2CrO4
(2)Fe2O3
(3)SiO
(4)不能形成 沉淀;不能形成 沉淀
(5)C
(6)2Cr2O +3S2O +10H+=4Cr3++6SO +5H2O
【知识点】氧化还原反应方程式的配平;难溶电解质的溶解平衡及沉淀转化的本质;离子方程式的书写
【解析】【解答】(1)由分析可知,煅烧过程中,铬元素转化为铬酸钠;
(2)由分析可知,二氧化硅、氧化铁都不溶于水,所以,水浸渣为二氧化硅、氧化铁;
(3)沉淀步骤调pH到弱酸性的目的是将硅元素转化为硅酸沉淀,形成硅酸沉淀;
(4)加入硫酸镁溶液、硫酸铵溶液的目的是将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀;pH9时,二者应该都要沉淀,所以当pH>9时,可能为MgSiO3不能沉淀,pH<9时,可能MgNH4PO4不能沉淀;
(5))由题给可知,五氧化二钒水能与酸溶液反应生成盐和水,也能与碱溶液发生生成盐和水的两性氧化物,所以为两性氧化物;
(6)由题意可知,还原步骤中加入焦亚硫酸钠溶液的目的是将铬元素转化为铬离子,该离子反应为:
【分析】由题给流程可知,铬钒渣在氢氧化钠和空气中煅烧,将钒、铬、铝、硅、磷等元素转化为相应的最高价含氧酸盐,煅烧渣加入水浸取、过滤得到含有二氧化硅、氧化铁的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将硅元素转化为硅酸沉淀,过滤得到硅酸滤渣和滤液;向滤液中加入硫酸镁溶液、硫酸铵溶液将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀,过滤得到含有MgSiO3、MgNH4PO4的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将钒元素转化为五氧化二钒,过滤得到五氧化二钒和滤液;向滤液中焦亚硫酸钠溶液将铬元素转化为三价铬离子,调节溶液pH将铬元素转化为氢氧化铬沉淀,过滤得到氢氧化铬。
32.【答案】(1)做还原剂,将 还原
(2)S2-+Ca2+=CaS ↓
(3)c
(4)不可行; 也会与盐酸反应生成可溶于水的 ,导致 溶液中混有 杂质无法除去、最终所得产品的纯度降低
(5)
(6)
【知识点】氧化还原反应;化学反应速率的影响因素;盐类水解的原理;难溶电解质的溶解平衡及沉淀转化的本质
【解析】【解答】(1)碳粉的主要作用是做还原剂,将硫酸钡还原成BaS;
(2)易溶于水的BaS 与过量的CaCl2可以发生复分解反应生成硫化钙沉淀;S2-+Ca2+=CaS ↓
(3)由于硫酸钡和磷酸钡均不溶于的沉淀,所以只能加入盐酸酸化;选择c;
(4)如果焙烧后的产物直接用酸浸取是不可行的,其原因是:硫化钙与盐酸反应生成可溶于水的氯化钙,导致氯化钡溶液中混有氯化钙杂质无法除去、最终所得产品的纯度降低;
(5)有分析可知,沉淀过程为非氧化还原,即复分解反应,反应方程为:BaCl2+TiCl4+H2O+2(NH4)2C2O4=BaTi(C2O4)2↓+4NH4Cl+2HCl
(6)“热分解”生成粉状钛酸钡,为氧化还原反应,产物有CO2和CO,该反应的化学方程式为:
BaTi(C2O4)2=BaTiO3+2CO2↑+2CO↑
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。
33.【答案】(1); 或
(2)b;
(3)Ⅰ;c;<;2
【知识点】盖斯定律及其应用;化学平衡常数;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)根据盖斯定律可知,反应③=1/2(反应②-①),所以对应
;根据平衡常数表达式与热化学方程式之间的关系可知,对应化学平衡常数为:
(2)根据上述分析结合图像可知,b曲线为300K时,在300K,60s时,-lg()=0.1,则
=10-0.1,根据反应可知,生成的M+即为转化的MO+,则MO+的转化率为,
(3)(ⅰ)步骤Ⅰ涉及的是碳氢键的断裂和氢氧键的形成,步骤Ⅱ中涉及碳氧键形成
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则此时正反应活化能会增大,根据图示可知,MO+与CD4反应的能量变化应为图中曲线c;
MO+与CH2D2反应时,因直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则单位时间内产量会下降,则氘代甲醇的产量CH2D2OD<CHD2OH;根据反应机理可知,若MO+与CHD3反应,生成的氘代甲醇可能为CHD2OD或者CD3OH,共2种。
【分析】(1)观察已知方程式与目标方程式,消除无关物质,即可得到目标方程的热化学反应方程。
(2)和(3)关于解答平衡图像题目技巧:①横轴坐标和纵坐标含有;②曲线斜率或者趋势;③曲线上特殊点,如起点、终点、交点和拐点等;④根据需要运用辅助线,如等温线、等压线等。
34.【答案】(1)C
(2);
(3)BC;通入分解平衡正移,导致增大,促进还原平衡正移
(4);C
【知识点】盖斯定律及其应用;化学平衡的影响因素;化学平衡移动原理;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)反应Ⅰ为气体体积增大的吸热反应,反应Ⅱ为气体体积不变的吸热反应,升高温度,反应Ⅰ、Ⅱ平衡均右移,CH4平衡转化率增大;降低压强,平衡右移,CH4平衡转化率增大,故有利于提高平衡转化率的条件是高温低压;故答案为:C;
(2)已知:Ⅰ:
Ⅱ:
根据盖斯定律,由Ⅰ+Ⅱ2得反应;
故△H1+2△H2=+329,,故答案为: ; ;
(3)①A.先转化为Fe,然后Fe又转化为,可循环利用;CaCO3受热分解生成和CO2, 又与CO2反应生成CaCO3,也可循环利用,选项A不符合题意;
B.过程ⅱ,吸收使浓度降低,促进氧化的平衡正移,选项B符合题意;
C.过程ⅱ吸收而产生的最终未被吸收,在过程ⅲ被排出,选项C符合题意;
D.焓变只与起始物质的量有关,与过程无关,故相比于反应Ⅰ,该流程的总反应还原需吸收的能量一样多,选项D不符合题意;
故答案为:BC;
②通入分解平衡正移,导致增大,促进还原平衡正移,故过程ⅱ平衡后通入,测得一段时间内物质的量上升,故答案为: 通入分解平衡正移,导致增大,促进还原平衡正移;
(4)①600℃以下,甲烷转化率随温度升高增大程度大于二氧化碳转化率,该阶段R减小,600℃以上,二氧化碳转化率随温度升高增大程度大于甲烷转化率,该阶段R增大,根据图1可知时,转化率为100%,即=1mol, 转化率为60%,即=3mol60%=1.8mol,故==1.8,故间R的变化趋势如图:,故答案为:;
②A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率,使单位时间内反应Ⅱ中CO2的转化率增大,增大的倍数比大,则R提高,选项A符合题意;
B.根据表中数据可知,温度越低,转化率越小,而R越大,增大的倍数比大,含氢产物中占比越高,选项B符合题意;
C.温度升高,转化率增加,转化率也增大,且两个反应中的转化率均增大,增大倍数多,故R值增大,选项C不符合题意;
D.改变催化剂使反应有选择性按反应Ⅰ而提高转化率,若转化率减小,则R值不一定增大,选项D符合题意;
故答案为:C。
【分析】(1)有利于提高 平衡转化率,即有利于反应向生成二氧化碳的方向进行;
(2)根据盖斯定律,由Ⅰ+Ⅱ×2可得;
(3)①A.Fe3O4、CaO在过程ii中作反应物、过程iii中作生成物;
B.过程ⅱ,吸收使浓度降低;
C.过程ii中CaO吸收CO2而产生的H2O最终未被CaO吸收;
D.焓变只与反应物和生成物的总能量差有关,与反应过程无关;
②化学平衡移动原理的具体内容为:如果改变可逆反应的条件(如浓度、压强、温度等),化学平衡就被破坏,并向减弱这种改变的方向移动;
(4)①时,=1mol, 转化率为60%,即=3mol60%=1.8mol,;
②A.根据分析;
B.温度越低,CH4的转化率越低,R越大;
C.温度升高,CH4转化率增加,CO2转化率增大;
D.改变催化剂使反应有选择性按反应Ⅰ而提高转化率。
近三年高考化学真题分类汇编:化学反应与能量(2023年)
一、选择题
1.(2023·湖南)下列有关电极方程式或离子方程式错误的是
A.碱性锌锰电池的正极反应:MnO2+H2O+e-=MnO(OH)+OH-
B.铅酸蓄电池充电时的阳极反应:Pb2++2H2O-2e-=PbO2+4H+
C.K3[Fe(CN)6]溶液滴入FeCl2溶液中:K++Fe2++[Fe(CN)6]3-=KFe[Fe(CN)6]↓
D.TiCl4加入水中:TiCl4+(x+2)H2O=TiO2·xH2O↓+4H++4Cl-
【答案】B
【知识点】电极反应和电池反应方程式;离子方程式的书写
【解析】【解答】A、碱性锌锰电池的正极反应式为MnO2+e-+H2O=MnO(OH)+OH-,A不符合题意;
B、铅蓄电池充电时的阳极反应式为PbSO4-2e-+2H2O=PbO2+4H++SO42-,B符合题意;
C、K3[Fe(CN)6]与FeCl2溶液反应的离子方程式为:K++Fe2++[Fe(CN)6]3-=KFe[Fe(CN)6]↓,C不符合题意;
D、TiCl4与H2O反应的离子方程式为:TiCl4+(x+2)H2O=TiO2·xH2O↓+4H++4Cl-,D不符合题意;
故答案为:B
【分析】A、碱性锌锰电池中MnO2为正极发生得电子的还原反应,生成MnO(OH);
B、铅蓄电池充电时阳极PbSO4发生失电子的氧化反应,生成PbO2;
C、K3[Fe(CN)6]与FeCl2反应生成KFe[Fe(CN)6]沉淀;
D、TiCl4与水反应生成TiO2·xH2O。
2.(2023·湖南)油画创作通常需要用到多种无机颜料。研究发现,在不同的空气湿度和光照条件下,颜料雌黄褪色的主要原因是发生了以下两种化学反应:
下列说法正确的是
A.和的空间结构都是正四面体形
B.反应Ⅰ和Ⅱ中,元素和S都被氧化
C.反应Ⅰ和Ⅱ中,参加反应的:Ⅰ<Ⅱ
D.反应Ⅰ和Ⅱ中,氧化转移的电子数之比为3∶7
【答案】D
【知识点】判断简单分子或离子的构型;氧化还原反应;氧化还原反应方程式的配平;氧化还原反应的电子转移数目计算
【解析】【解答】A、S2O32-中心硫原子的价层电子对数为,因此S2O32-为四面体型,但不是正四面体,SO42-中心硫原子的价层电子对数为,因此SO42-为正四面体结构,A不符合题意;
B、反应Ⅰ中As元素化合价不变,S元素化合价由-2价变为+2价,化合价升高,S元素被氧化;反应Ⅱ中As元素由+3价变为+5价,化合价升高,As元素被氧化,S元素有-2价变为+6价,化合价升高,S元素被氧化,B不符合题意;
C、反应Ⅰ的化学方程式为2As2S3+6O2+3H2O=2As2O3+3H2S2O3,参加反应的,反应Ⅱ的化学方程式为As2S3+7O2+6H2O=2H3AsO4+3H2SO4,参加反应的,因此反应Ⅰ和反应Ⅱ中参加反应的:Ⅰ>Ⅱ,C不符合题意;
D、反应Ⅰ中氧化1molAs2S3转移的电子数为1mol×3×4=12mol,反应Ⅱ中氧化1molAs2S3转移电子数为1mol×(2×2+3×8)=28mol,因此其转移电子数之比为12mol:28mol=3:7,D符合题意;
故答案为:D
【分析】A、计算中心原子的价层电子对数,从而确定其空间结构;
B、根据反应过程中As元素和S元素化合价的变化分析,若化合价升高,则被氧化;
C、根据反应Ⅰ、反应Ⅱ的化学方程式进行分析即可;
D、根据反应过程中化合价的变化计算转移电子数。
3.(2023·湖南)葡萄糖酸钙是一种重要的补钙剂,工业上以葡萄糖、碳酸钙为原料,在溴化钠溶液中采用间接电氧化反应制备葡萄糖酸钙,其阳极区反应过程如下:
下列说法错误的是
A.溴化钠起催化和导电作用
B.每生成葡萄糖酸钙,理论上电路中转移了电子
C.葡萄糖酸能通过分子内反应生成含有六元环状结构的产物
D.葡萄糖能发生氧化、还原、取代、加成和消去反应
【答案】B
【知识点】乙醇的化学性质;消去反应;电解池工作原理及应用;氧化还原反应的电子转移数目计算
【解析】【解答】A、阳极上Br-转化为Br2,Br2转化为HBrO,HBrO转化为Br-,因此NaBr起到催化剂作用;同时NaBr溶液提供了自由移动的离子,起导电作用,A不符合题意;
B、每生成1mol葡萄糖酸钙,需要消耗2mol葡萄糖分子,因此转移电子数为4mol,B符合题意;
C、羟基发生脱水成醚的反应,可生成个环状醚,C不符合题意;
D、葡萄糖中的醛基可发生氧化反应、还原反应、加成反应,羟基可发生取代反应和消去反应,D不符合题意;
故答案为:B
【分析】A、根据阳极上溴元素的转化分析;
B、每生成1mol葡萄糖酸钙,需消耗2mol葡萄糖分子,据此计算转移电子数;
C、羟基发生脱水反应,可形成环状醚结构;
D、根据葡萄糖结构中含有的羟基、醛基进行分析。
4.(2023·辽宁)某无隔膜流动海水电解法制的装置如下图所示,其中高选择性催化剂可抑制产生。下列说法正确的是
A.b端电势高于a端电势
B.理论上转移生成
C.电解后海水下降
D.阳极发生:
【答案】D
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.由分析可知,a为正极,b电极为负极,则a端电势高于b端电势,A错误;
B.右侧电极上产生氢气的电极方程式为:2H++2e-=H2↑,则理论上转移2mol电子生成2g氢气,B错误;
C.由图可知,该装置的总反应为电解海水的装置,随着电解的进行,海水的浓度增大,但是其pH基本不变,C错误;
D.由图可知,阳极上的电极反应为:,D正确;
故答案为:D
【分析】由图可知,左侧电极产生氧气,则左侧电极为阳极,电极a为正极,右侧电极为阴极,b电极为负极,该装置的总反应产生氧气和氢气,相当于电解水,解答即可。
5.(2023·辽宁)某工厂采用如下工艺制备,已知焙烧后元素以价形式存在,下列说法错误的是
A.“焙烧”中产生
B.滤渣的主要成分为
C.滤液①中元素的主要存在形式为
D.淀粉水解液中的葡萄糖起还原作用
【答案】B
【知识点】氧化还原反应;物质的分离与提纯;制备实验方案的设计
【解析】【解答】A.铁、铬氧化物与碳酸钠和氧气反应时生成对应的钠盐和二氧化碳,A正确;
B.焙烧过程铁元素被氧化,滤渣的主要成分为氢氧化铁,B错误;
C.滤液①中Cr元素的化合价是+6价,铁酸钠遇水水解生成氢氧化铁沉淀溶液显碱性,所以Cr 元素主要存在形式为CrO42-,C正确;
D.由分析知淀粉水解液中的葡萄糖,含有醛基,起还原作用,D正确;
故答案为:B
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。
6.(2023·辽宁)某低成本储能电池原理如下图所示。下列说法正确的是
A.放电时负极质量减小
B.储能过程中电能转变为化学能
C.放电时右侧通过质子交换膜移向左侧
D.充电总反应:
【答案】B
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.放电时负极上Pb失电子结合硫酸根离子生成PbSO4附着在负极上,负极质量增大,A错误;
B.该装置为电解池,将电能转化为化学能,B正确;
C.放电时,右侧为正极,电解质溶液中的阳离子向正极移动,左侧的H+通过质子交换膜移向右侧,C错误;
D.充电时,总反应为PbSO4+2Fe2+=Pb+SO42-+2Fe3+,D错误;
故答案为:B
【分析】该储能电池放电时,Pb为负极,失电子结合硫酸根离子生成PbSO4,则多孔碳电极为正极,正极上Fe3+得电子转化为Fe2+,充电时,多孔碳电极为阳极,Fe2+失电子生成Fe3+,PbSO4电极为阴极,PbSO4得电子生成Pb和硫酸。
7.(2023·辽宁)一定条件下,酸性溶液与发生反应,(Ⅱ)起催化作用,过程中不同价态含粒子的浓度随时间变化如下图所示。下列说法正确的是
A.(Ⅲ)不能氧化
B.随着反应物浓度的减小,反应速率逐渐减小
C.该条件下,(Ⅱ)和(Ⅶ)不能大量共存
D.总反应为:
【答案】C
【知识点】氧化还原反应;氧化还原反应方程式的配平;化学反应速率的影响因素
【解析】【解答】A.由图像可知,随着时间的推移Mn(III)的浓度先增大后减小,说明开始反应生成Mn(III),后Mn(III)被消耗生成Mn(II),Mn(III)能氧化H2C2O4,A项错误;
B.随着反应物浓度的减小,后面生成Mn(II)对反应起催化作用,反应速率会增大,B项错误;
C.由图像可知,Mn(VII)的浓度为0后才开始生成Mn(II),该条件下Mn(II)和Mn(VII)不能大量共存,C项正确;
D.H2C2O4为弱酸,写离子反应时不能拆;
【分析】开始一段时间(大约13min前)随着时间的推移Mn(VII)浓度减小直至为0,Mn(III)浓度增大直至达到最大值,结合图像,此时间段主要生成Mn(III),同时先生成少量Mn(IV)后Mn(IV)被消耗;后来(大约13min后)随着时间的推移Mn(III)浓度减少,Mn(II)的浓度增大;据此作答。
8.(2023·辽宁)科技是第一生产力,我国科学家在诸多领域取得新突破,下列说法错误的是
A.利用CO2合成了脂肪酸:实现了无机小分子向有机高分子的转变
B.发现了月壤中的“嫦娥石[(Ca8Y)Fe(PO4)7]”:其成分属于无机盐
C.研制了高效率钙钛矿太阳能电池,其能量转化形式:太阳能→电能
D.革新了海水原位电解制氢工艺:其关键材料多孔聚四氟乙烯耐腐蚀
【答案】A
【知识点】化学反应中能量的转化;高分子材料
【解析】【解答】A.脂肪酸为小分子有机物,不属于高分子有机物;A项错误;
B.嫦娥石因其含有Y、Ca、Fe等元素,又因含有磷酸根,是无机盐,B正确;
C.钙钛矿太阳能电池可以将太阳能转化为电能,C正确;
D.聚四氟乙烯塑料塑料,耐酸、耐碱,不会被含水腐蚀,D正确;
故答案为:A。
【分析】易错分析:A.注意区分高分子与小分子化合物的区别,高分子化合物一般分子量几万到几十万不等。
9.(2023·湖北)2023年5月10日,天舟六号货运飞船成功发射,标志着我国航天事业进入到高质量发展新阶段。下列不能作为火箭推进剂的是
A.液氮-液氢 B.液氧-液氢 C.液态-肼 D.液氧-煤油
【答案】A
【知识点】常见能量的转化及运用
【解析】【解答】 能作为火箭推进剂的必须满足:1.反应速率要快;2.短时间能放出大量的热,液氮和液氢反应非常困难,不能做作为火箭的推进剂。
故答案为:A.
【分析】要弄清楚火箭推进剂的要求,要快速反应且放出大量的热,根据反应特点进行解答即可。
10.(2023·湖北)下列化学事实不符合“事物的双方既相互对立又相互统一”的哲学观点的是
A.石灰乳中存在沉淀溶解平衡
B.氯气与强碱反应时既是氧化剂又是还原剂
C.铜锌原电池工作时,正极和负极同时发生反应
D.Li、Na、K的金属性随其核外电子层数增多而增强
【答案】D
【知识点】氧化还原反应;难溶电解质的溶解平衡及沉淀转化的本质;原电池工作原理及应用
【解析】【解答】A.当沉淀速率和溶解速率相等时,电解质建立了沉淀溶解平衡,沉淀和溶解即对立又互相统一,符合 事物的双方既相互对立又相互统一 ,A项正确;
B.氯气与强碱反应时,有部分氯气发生氧化反应,同时也有部分氯气发生还原反应,因此,氯气既是氧化剂又是还原剂,氯气的这两种作用统一在同一反应中,这个化学事实符合“事物的双方既相互对立又相互统一”的哲学观点,B正确;
C.铜锌原电池工作时,正极和负极同时发生反应,正极上发生还原反应,负极上发生氧化反应,氧化反应和还原反应是对立的,但是这两个反应又同时发生,统一在原电池反应中,因此,这个化学事实符合“事物的双方既相互对立又相互统一”的哲学观点,C正确;
D.Li、Na、K均为第ⅠA的金属元素,其核外电子层数依次增多,原子核对最外层电子的吸引力逐渐减小,其失电子能力依次增强,因此,其金属性随其核外电子层数增多而增强,这个化学事实不符合“事物的双方既相互对立又相互统一”的哲学观点,D项错误;
故答案为:D.
【分析】弄清题目的意思,“ 既相互对立又相互统一 ”,结合化学知识与理论进行判断,有对立和同一的思想即可。
11.(2023·湖北)工业制备高纯硅的主要过程如下:
石英砂粗硅高纯硅
下列说法错误的是
A.制备粗硅的反应方程式为
B.1molSi含Si-Si键的数目约为
C.原料气HCl和应充分去除水和氧气
D.生成的反应为熵减过程
【答案】B
【知识点】原子晶体(共价晶体);晶胞的计算;氧化还原反应方程式的配平
【解析】【解答】A.有分析可知,高温下,二氧化硅和C反应生成单质硅,反应方程式:,A项正确;
B. 在晶体硅中,每个Si与其周围的4个Si形成共价键并形成立体空间网状结构,因此,平均每个Si形成2个共价键, 1mol Si含Si-Si键的数目约为2NA,B项错误;
C. HCl易与水形成盐酸,在一定的条件下氧气可以将HCl氧化;HCI在高温下遇到氧气能发生反应生成水,且其易燃易爆,C项正确;
D.该反应是气体分子数减少的反应,因此,生成SiHCI3的反应为熵减过程,D说法正确;
故答案为:B。
【分析】易错分析:B.在计算单质硅或者金刚石中Si-Si键或者C-C键时,要注意每个共价键被两个原子共用,平均到每个原子的共价键时要乘以。
12.(2023·湖北)我国科学家设计如图所示的电解池,实现了海水直接制备氢气技术的绿色化。该装置工作时阳极无生成且KOH溶液的浓度不变,电解生成氢气的速率为。下列说法错误的是
A.b电极反应式为
B.离子交换膜为阴离子交换膜
C.电解时海水中动能高的水分子可穿过PTFE膜
D.海水为电解池补水的速率为
【答案】D
【知识点】电极反应和电池反应方程式;原电池工作原理及应用
【解析】【解答】A.b电极反应式为b电极为阴极,发生还原反应,电极反应为2H2O+2e-=H2↑+2OH-,故A正确;
B.该装置工作时阳极无Cl2生成且KOH浓度不变,阳极发生的电极反应为4OH--4e-=O2↑+2H2O,为保持OH-离子浓度不变,则阴极产生的OH-离子要通过离子交换膜进入阳极室,即离子交换膜应为阴离子交换摸,故B正确;
C.电解时电解槽中不断有水被消耗,海水中的动能高的水可穿过PTFE膜,为电解池补水,故C正确;
D.由电解总反应可知,每生成1molH2要消耗1molH2O,生成H2的速率为,则补水的速率也应是,故D错误;
故答案为:D。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
13.(2023·全国乙卷)室温钠-硫电池被认为是一种成本低、比能量高的能源存储系统。一种室温钠-硫电池的结构如图所示。将钠箔置于聚苯并咪唑膜上作为一个电极,表面喷涂有硫黄粉末的炭化纤维素纸作为另一电极。工作时,在硫电极发生反应:S8+e-→S,S+e-→S,2Na++S+2(1-)e-→Na2Sx
下列叙述错误的是
A.充电时Na+从钠电极向硫电极迁移
B.放电时外电路电子流动的方向是a→b
C.放电时正极反应为:2Na++S8+2e-→Na2Sx
D.炭化纤维素纸的作用是增强硫电极导电性能
【答案】A
【知识点】电极反应和电池反应方程式;原电池工作原理及应用
【解析】【解答】A.充电时为电解池装置,阳离子移向阴极,即钠电极,故充电时,Na+由硫电极迁移至钠电极,A错误;
B.放电时,为原电池,负极失电子,即为Na电极,正极得电子,即为单质S,所以电子由a流向b,B项正确;
C.根据题目给出硫电极发生的反应,S8最终变成Na2Sx,电极反应为:,C项正确;
D. 面喷涂有硫黄粉末的炭化纤维素纸 ,碳纤维具有导电性,可以增强电极导电能力,D项正确;
故答案为:A。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
14.(2023·全国乙卷)下列应用中涉及到氧化还原反应的是
A.使用明矾对水进行净化 B.雪天道路上撒盐融雪
C.暖贴中的铁粉遇空气放热 D.荧光指示牌被照发光
【答案】C
【知识点】氧化还原反应
【解析】【解答】A.使用明矾对水进行净化过程中,明矾发生水解生成氢氧化铝胶体,氢氧化铝胶体粒子吸附水中的悬浮颗粒并沉降下来从而达到净水目的,因此没有涉及到氧化还原反应,A错误;
B.雪天道路上撒盐融雪,是因为雪遇到盐而使其熔点降低并熔化,属于物理变化,B项错误;
C.暖贴中的铁粉遇空气放热,是因为暖贴中含有的铁粉、碳粉、氯化钠溶液等物质,这些物质遇到空气后形成原电池,将化学能转化为电能,同时放出热量,铁元素化合价发生改变,属于氧化还原反应,C项正确;
D.荧光指示牌被照发光,是因为光被指示牌发生了反射,属于物理现象,D项错误;
故答案为:C。
【分析】判断该过程是否为氧化还原反应的依据:判断反应前后是否有化合价的升降,若有化合价的改变,则为氧化还原反应,反之则不是。
15.(2023·全国乙卷)一些化学试剂久置后易发生化学变化。下列化学方程式可正确解释相应变化的是
A 硫酸亚铁溶液出现棕黄色沉淀
B 硫化钠溶液出现浑浊颜色变深
C 溴水颜色逐渐褪去
D 胆矾表面出现白色粉末
A.A
B.B
C.C
D.D
【答案】D
【知识点】氧化还原反应方程式的配平
【解析】【解答】A.硫酸亚铁溶液出现棕黄色沉淀,硫酸亚铁久置后易被氧气氧化,化学方程式为:12FeSO4+3O2+6H2O=4Fe2(SO4)3+4Fe(OH)3↓,A错误;
B.硫化钠中S为-2价,具有还原性,可以被氧气氧化为相邻价态的单质S,化学方程式为: 2 Na2S + O2 + 2 H2O = 4 NaOH + 2 S↓,B错误
C.溴水的主要成分是溴和水,发生反应为:Br2+H2O=HBrO+HBr,2HBrO=2HBr+O2,所以溴水放置太久会变质,C错误;
D.胆矾为CuSO4·5H2O,颜色为蓝色,如果表面失去结晶水,则变为白色的CuSO4,化学方程式为:CuSO4·5H2O= CuSO4+5H2O,方程式正确,D正确;
故答案为:D。
【分析】易错分析:B.含硫化合物之间的相互转化,一般反应生成相邻价态的含硫物质;如-2价硫一般氧化得到单质S。
16.(2023·新课标卷)“肼合成酶”以其中的配合物为催化中心,可将与转化为肼(),其反应历程如下所示。
下列说法错误的是
A.、和均为极性分子
B.反应涉及、键断裂和键生成
C.催化中心的被氧化为,后又被还原为
D.将替换为,反应可得
【答案】D
【知识点】极性分子和非极性分子;氧化还原反应
【解析】【解答】A.根据定义可知,电荷分布不均匀,不对称,为极性分子,NH2OH,NH3,H2O的电荷分布都不均匀;A项正确;
B.根据反应过程可知,反应涉及N-H、N-O键断裂和N-N键形成,B项正确;
C.根据反应历程可知,Fe2+先被氧化为Fe3+,又被还原为Fe2+,C项正确;
D.由反应历程可知,反应过程中,生成的NH2NH2有两个氢来源于NH3,所以将NH2OH替换为ND2OD,得到ND2NH2和HDO,D项错误;
故答案为:D。
【分析】解答关于反应历程的题目思路:弄清楚反应化学键的断裂和形成,以及元素化合键的变化即可进行解答。
17.(2023·新课标卷)一种以和为电极、水溶液为电解质的电池,其示意图如下所示。放电时,可插入层间形成。下列说法错误的是
A.放电时为正极
B.放电时由负极向正极迁移
C.充电总反应:
D.充电阳极反应:
【答案】C
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.根据化合价升降可知,该电池中Zn为负极;为正极,A项正确;
B.电解质溶液阴阳离子移动的方向为:阳正阴负,B项正确;
C.放电时总反应为:,放电与充电时相反的,所以反应为:,C项错误;
D.充电阳极上,氧化为,根据化合价变化可知,阳极反应为:,D项正确;
故答案为:C。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。(3)充电电池→放电时为原电池→失去电子的一极为负极。(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
18.(2023·新课标卷)根据实验操作及现象,下列结论中正确的是
选项 实验操作及现象 结论
常温下将铁片分别插入稀硝酸和浓硝酸中,前者产生无色气体,后者无明显现象 稀硝酸的氧化性比浓硝酸强
取一定量样品,溶解后加入溶液,产生白色沉淀。加入浓,仍有沉淀 此样品中含有
将银和溶液与铜和溶液组成原电池。连通后银表面有银白色金属沉积,铜电极附近溶液逐渐变蓝 的金属性比强
向溴水中加入苯,振荡后静置,水层颜色变浅 溴与苯发生了加成反应
A.A
B.B
C.C
D.D
【答案】C
【知识点】硝酸的化学性质;苯酚的性质及用途;原电池工作原理及应用
【解析】【解答】A.常温下,铁片与浓硝酸会发生钝化,导致现象不明显,稀硝酸与铁会产生气泡,所以不能通过该实验现象比较浓硝酸和稀硝酸的氧化性强弱,A错误;
B.浓硝酸会氧化亚硫酸根生成硫酸根,也会产生白色沉淀,所以不能通过该实验现象判断样品中含有硫酸根,B错误;
C.在形成原电池过程中,活泼金属做负极,发生氧化反应,生成了铜离子,溶液变为蓝色,所以该实验可以比较铜和银的金属性强弱,C正确;
D.溴水和苯发生萃取,从而使溴水褪色,不是发生加成反应,D项错误;
故答案为:C。
【分析】易错分析:B.进行硫酸根或者亚硫酸根检验时,不能用硝酸酸化,一般用盐酸酸化。
C.一般原电池负极活泼型大于正极,可以进行金属活泼性判断。
19.(2023·全国甲卷)用可再生能源电还原时,采用高浓度的抑制酸性电解液中的析氢反应来提高多碳产物(乙烯、乙醇等)的生成率,装置如下图所示。下列说法正确的是
A.析氢反应发生在电极上
B.从电极迁移到电极
C.阴极发生的反应有:
D.每转移电子,阳极生成气体(标准状况)
【答案】C
【知识点】电极反应和电池反应方程式;原电池工作原理及应用;电解池工作原理及应用
【解析】【解答】A.析氢反应为还原反应,与直流电源正极相连的IrOx-Ti电极为电解池的阳极,水在阳极失去电子发生氧化反应生成氧气和氢离子,电极反应式为2H2O-4e-=O2↑+4H+,故A错误;
B.离子交换膜为质子交换膜,只允许氢离子通过,Cl-不能通过,故B错误;
C.铜电极为阴极,酸性条件下二氧化碳在阴极得到电子发生还原反应生成乙烯、乙醇等,电极反应式为2CO2+12H++12e =C2H4+4H2O、2CO2+12H++12e =C2H5OH+3H2O,故C正确;
D.电极反应式为2H2O-4e-=O2↑+4H+,每转移1mol电子,生成0.25molO2,在标况下体积为5.6L,故D错误;
故答案为:C。
【分析】解答新型化学电源的步骤:(1)判断电池类型→确认电池原理→核实电子、离子移动方向。
(2)确定电池两极→判断电子、离子移动方向→书写电极反应和电池反应。
(3)充电电池→放电时为原电池→失去电子的一极为负极。
(4)电极反应→根据电荷守恒、原子守恒配平电极方程式。
20.(2023·浙江1月选考)在熔融盐体系中,通过电解和获得电池材料,电解装置如图,下列说法正确的是
A.石墨电极为阴极,发生氧化反应
B.电极A的电极反应:
C.该体系中,石墨优先于参与反应
D.电解时,阳离子向石墨电极移动
【答案】C
【知识点】电极反应和电池反应方程式;电解池工作原理及应用
【解析】【解答】A.由图可知,在外加电源下石墨电极上C转化为CO,失电子发生氧化反应,则石墨电极为阳极,选项A不符合题意;
B.由上述分析可知,电极A为阴极,电极反应为,选项B不符合题意;
C. 石墨电极中碳失去电子,因此该体系中,石墨优先于参与反应,选项C符合题意;
D.电解时,阳离子向阴极移动,石墨电极为阳极,则阳离子向阴极电极A移动,选项D不符合题意;
故答案为:C。
【分析】电解和获得电池材料,则电极A为阴极,电极反应式应为,石墨电极为阳极,电极反应式为C-2e-+O2-=CO↑。
21.(2023·浙江1月选考)关于反应,下列说法正确的是
A.生成,转移电子
B.是还原产物
C.既是氧化剂又是还原剂
D.若设计成原电池,为负极产物
【答案】A
【知识点】氧化还原反应
【解析】【解答】A.NH2OH中N元素的化合价由-1价升高到+1价,反应生成1mol一氧化二氮,转移4mol电子,故A符合题意;
B.由上述分析可知,NH2OH是反应的还原剂,故B不符合题意;
C.由上述分析可知,NH2OH是反应的还原剂,铁离子是反应的氧化剂,故C不符合题意;
D.由方程式可知,反应中铁元素的化合价降低被还原,铁离子是反应的氧化剂,若设计成原电池,铁离子在正极得到电子发生还原反应生成亚铁离子,亚铁离子为正极产物,故D不符合题意;
故答案为:A。
【分析】 中,NH2OH中N元素的化合价由-1价升高到+1价,失去电子,作还原剂,Fe3+的化合价由+3价降低到+2价,得到电子,作氧化剂。
二、非选择题
22.(2023·湖南)聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。
(1)Ⅰ.苯乙烯的制备
已知下列反应的热化学方程式:



计算反应④的   ;
(2)在某温度、下,向反应器中充入气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75%,需要向反应器中充入   水蒸气作为稀释气(计算时忽略副反应);
(3)在、下,以水蒸气作稀释气。作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:


以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的选择性S()随乙苯转化率的变化曲线如图所示,其中曲线b代表的产物是   ,理由是   ;
(4)关于本反应体系中催化剂的描述错误的是____;
A.X射线衍射技术可测定晶体结构
B.可改变乙苯平衡转化率
C.降低了乙苯脱氢反应的活化能
D.改变颗粒大小不影响反应速率
(5)Ⅱ.苯乙烯的聚合
苯乙烯聚合有多种方法,其中一种方法的关键步骤是某(Ⅰ)的配合物促进(引发剂,X表示卤素)生成自由基,实现苯乙烯可控聚合。
引发剂中活性最高的是   ;
(6)室温下,①在配体L的水溶液中形成,其反应平衡常数为K;②在水中的溶度积常数为。由此可知,在配体L的水溶液中溶解反应的平衡常数为   (所有方程式中计量系数关系均为最简整数比)。
【答案】(1)+118
(2)5
(3)苯;反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯
(4)B;D
(5)C6H5CH2Cl
(6)K Ksp
【知识点】盖斯定律及其应用;催化剂;化学平衡常数;化学平衡的影响因素;化学平衡的计算
【解析】【解答】(1)根据盖斯定律可得,该反应的反应热ΔH4=ΔH1-ΔH2-ΔH3=(-4386.9kJ·mol-1)-(-4263.1kJ·mol-1)-(-241.8kJ·mol-1)=118kJ·mol-1,因此该反应的反应热ΔH4=+118kJ·mol-1。
(2)当乙苯的平衡转化率为50%时,参与反应的n(乙苯)=0.5mol,可得平衡三段式如下:
因此平衡时混合气体的总物质的量n(总)=0.5mol+0.5mol+0.5mol=1.5mol,设此时容器的体积为V,则可得该温度下反应的平衡常数。
当乙苯的平衡转化率为75%时,参与反应的n(乙苯)=1mol×75%=0.75mol,可得平衡三段式如下:
因此平衡时混合气体的总物质的量n(总)=0.25mol+0.75mol+0.75mol=1.75mol。设加入n(水蒸气)=amol,此时容器的体积为V′,由于物质的量之比等于体积之比,因此可得,解得。此时反应的平衡常数
因为反应温度不变,因此平衡常数不变,所以可得,解得a=5。所以加入水蒸气的物质的量为5mol。
(3)反应④为主反应,随着乙苯转化率的增大,反应生成苯乙烯和氢气的量增多,体系的压强增大。而反应⑥中反应前后气体分子数不变,压强增大,平衡不移动。反应⑤中反应后气体分子数增大,压强增大后,反应⑤平衡逆向移动,苯的产量降低,因此曲线b表示的产物是苯。
(4)A、测定晶体结构的方法为X射线衍射技术,A不符合题意;
B、Fe2O3为反应的催化剂,加入催化剂,不影响平衡移动,因此不可改变乙苯的平衡转化率,B符合题意;
C、Fe2O3为反应的催化剂,加入催化剂可降低乙苯脱氢反应的活化能,C不符合题意;
D、改变Fe2O3的颗粒大小,可改变固体与气体的接触面积,从而改变反应速率,D符合题意;
故答案为:BD
(5)由于非金属性Cl>Br>I,氯原子吸引电子的能力更强,则形成自由基C6H5CH2·的能力越强,因此活性最高的是C6H5CH2Cl。
(6)Cu+在配体L的水溶液中反应的离子方程式为:Cu+(aq)+2L(aq) [Cu(L)2]+(aq),该反应的平衡常数。CuBr的沉淀溶解平衡反应为CuBr(s) Cu+(aq)+Br-(aq),该反应的平衡常数Ksp=c(Cu+)×c(Br-)。CuBr与L反应的方程式为CuBr(s)+2L(aq)=[Cu(L)2]+(aq)+Br-(aq),该反应的平衡常数。由于,所以K′=K·Ksp。
【分析】(1)根据盖斯定律计算目标反应的反应热。
(2)温度不变,则平衡常数不变,根据三段式结合平衡常数的表达式进行计算。
(3)随着乙苯转化率增大,体系的压强增大,结合压强对反应⑤、反应⑥平衡移动的影响分析。
(4)A、测定晶体结构,可用X射线衍射实验;
B、催化剂只改变反应速率,不改变平衡移动;
C、加入催化剂,可降低反应所需的活化能;
D、增大催化剂的接触面积,可增大反应速率;
(5)根据卤素原子吸引电子的能力强弱分析。
(6)CuBr与L反应的方程式为CuBr(s)+2L(aq) [Cu(L)2]+(aq)+Br-(aq),据此结合平衡常数的表达式进行计算。
23.(2023·湖南)超纯是制备第三代半导体的支撑源材料之一,近年来,我国科技工作者开发了超纯纯化、超纯分析和超纯灌装一系列高新技术,在研制超纯方面取得了显著成果,工业上以粗镓为原料,制备超纯的工艺流程如下:
已知:①金属的化学性质和相似,的熔点为;
②(乙醚)和(三正辛胺)在上述流程中可作为配体;
③相关物质的沸点:
物质
沸点/ 55.7 34.6 42.4 365.8
回答下列问题:
(1)晶体的晶体类型是   ;
(2)“电解精炼”装置如图所示,电解池温度控制在的原因是   ,阴极的电极反应式为   ;
(3)“合成”工序中的产物还包括和,写出该反应的化学方程式:   ;
(4)“残渣”经纯水处理,能产生可燃性气体,该气体主要成分是   ;
(5)下列说法错误的是____;
A.流程中得到了循环利用
B.流程中,“合成”至“工序X”需在无水无氧的条件下进行
C.“工序X”的作用是解配,并蒸出
D.用核磁共振氢谱不能区分和
(6)直接分解不能制备超纯,而本流程采用“配体交换”工艺制备超纯的理由是   ;
(7)比较分子中的键角大小:   (填“>”“<”或“=”),其原因是   。
【答案】(1)分子晶体
(2)保证Ga为液体,便于纯Ga流出;Ga3++3eˉ=Ga
(3)8CH3I+2Et2O+Ga2Mg5=2+3+2
(4)CH4
(5)D
(6)NR3沸点较高,易与Ga(CH3)3分离,Et2O的沸点低于Ga(CH3)3,一起气化,难以得到超纯Ga(CH3)3
(7)>;Ga(CH3)3中Ga为sp2杂化,所以为平面结构,而Ga(CH3)3(Et2O)中Ga为sp3杂化,所以为四面体结构,故夹角较小
【知识点】分子晶体;物质的分离与提纯;制备实验方案的设计;化学实验方案的评价;电解池工作原理及应用
【解析】【解答】(1)晶体Ga(CH3)3的沸点为55.7℃,比水的沸点还低,因此属于分子晶体。
(2)电解精炼过程是为了制取高纯Ga,由于Ga的熔点为29.8℃,因此控制温度在40~45℃是为了使电解生成的Ga为液态,便于Ga的分离。电解过程中,阴极上Ga3+发生得电子的还原反应,生成Ga,该电极的电极反应式为:Ga3++3e-=Ga。
(3)“合成Ga(CH3)3(Et2O)”工序中往Ga2Mg5中加入CH3I、Et2O,反应生成Ga(CH3)3(Et2O)、MgI2和CH3MgI,该反应的化学方程式为:Ga2Mg5+8CH3I+2Et2O=2Ga(CH3)3(Et2O)+3MgI2+2CH3MgI。
(4)“残渣”中含有反应后生成的CH3MgI,经水处理过程中,能与H2O发生水解反应,生成CH4、HI和Mg(OH)2,其中属于可燃性气体的为CH4。
(5)A、流程中“配体交换”工序中反应生成了Et2O,因此流程中Et2O可循环利用,A不符合题意;
B、Ga2Mg5能与H2O反应,Ga(CH3)3(Et2O)能与H2O和O2反应,因此流程中”合成Ga2Mg5”至“工序X”都需在无水、无氧的条件下进行,B不符合题意;
C、“配体交换”工序中反应生成了Ga(CH3)3(NR3),经“工序X”后得到Ga(OH)3,因此“工序X”的作用是解配Ga(CH3)3(NR3),并蒸出Ga(OH)3,C不符合题意;
D、Ga(CH3)3、CH3I二者都只含有一种氢原子,但其在核磁共振氢谱中,化学位移不同,因此可通过核磁共振氢谱进行鉴别,D符合题意;
故答案为:D
(6)NR3的沸点较高,易与Ga(CH3)3分离;而Et2O的沸点低于Ga(CH3)3,在Et2O转化为气态的同时,Ga(CH3)3也是气态,难以得到超纯的Ga(CH3)3。因此本流程中采用了“配体交换”工艺。
(7)Ga(CH3)3中Ga采用sp2杂化,为平面型结构;而Ga(CH3)3(Et2O)中Ga为sp3杂化,为四面体结构。所以键角Ga(CH3)3大于Ga(CH3)3(Et2O)。
【分析】(1)Ga(CH3)3的沸点较低,属于分子晶体。
(2)结合Ga的沸点为29.8℃可知,温度在40~45℃时,Ga为液态。阴极上Ga3+发生得电子的还原反应,生成Ga单质。
(3)根据流程确定反应物和生成物,结合原子守恒书写反应的化学方程式。
(4)“残渣”的成分为CH3MgI,经水处理的过程中CH3MgI与H2O发生水解反应。
(5)A、“配体交换”过程中,生成了Et2O;
B、Ga2Mg5、CH3MgI都易与H2O、O2发生反应;
C、“配体交换”后得到Ga(CH3)3(NR3),经工序X后得到Ga(CH3)3;
D、二者核磁共振氢谱的化学位移不同,可鉴别;
(6)Et2O的沸点低于Ga(CH3)3,在蒸出Et2O的同时,Ga(CH3)3也为气态,一起蒸出。而NR3的沸点较高,易与Ga(CH3)3分离。
(7)结合Ga(OH)3、Ga(CH3)3(Et2O)的结构判断二者键角的大小。
24.(2023·辽宁)硫酸工业在国民经济中占有重要地位。
(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、   和   (填化学式)。
(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:
NO2+SO2+H2O=NO+H2SO4
2NO+O2=2NO2
(ⅰ)上述过程中NO2的作用为   。
(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是   (答出两点即可)。
(3)接触法制硫酸的关键反应为SO2的催化氧化:
SO2(g)+O2(g)SO3(g) ΔH=-98.9kJ·mol-1
(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是   。
a.温度越高,反应速率越大
b.α=0.88的曲线代表平衡转化率
c.α越大,反应速率最大值对应温度越低
d.可根据不同下的最大速率,选择最佳生产温度
(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是   (填标号)。
(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数式表示上述催化氧化反应的Kp=   (用平衡分压代替平衡浓度计算)。
【答案】(1)CuO;SO3
(2)催化剂;反应中有污染空气的NO和NO2放出影响空气环境、NO2可以溶解在硫酸中给产物硫酸带来杂质、产率不高(答案合理即可)
(3)cd;d;
【知识点】热化学方程式;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)根据图示的热重曲线所示,在700℃左右会出现两个吸热峰,说明此时CuSO4发生热分解反应,从TG图像可以看出,质量减少量为原CuSO4质量的一半,说明有固体CuO剩余,还有其他气体产出,此时气体产物为SO2、SO3、O2;
(2)(i)根据所给的反应方程式,NO2在反应过程中线消耗再生成,说明NO2在反应中起催化剂的作用;(ii)铅室法被接触法代替因为在反应中有污染空气的NO和NO2放出影响空气环境;
(3)(i)a.根据不同转化率下的反应速率曲线可以看出,随着温度的升高反应速率先加快后减慢,a错误
b.从图中所给出的速率曲线可以看出,相同温度下,转化率越低反应速率越快,但在转化率小于88%的时的反应速率图像并没有给出,无法判断α=0.88的条件下是平衡转化率,b错误;
c.从图像可以看出随着转化率的增大,最大反应速率不断减小,最大反应速率出现的温度也逐渐降低,c正确;
d.从图像可以看出随着转化率的增大,最大反应速率出现的温度也逐渐降低,这时可以根据不同转化率选择合适的反应温度以减少能源的消耗,d正确;
故答案为:cd;
(ii)从图中可以看出标号为d的催化剂V-K-Cs-Ce对SO2的转化率最好,产率最佳,故答案选d;
(iii)利用分压代替浓度计算平衡常数,反应的平衡常数:
设SO2初始量为xmol,则平衡时n(SO2)=x·αe,n(SO3)=x-x·αe=x(1-αe);带入Kp可得;
【分析】难点分析:(2)平衡图像解题技巧:对应化学反应速率图像和化学平衡图像,应该注意下列几点:1、横轴坐标和纵坐标含义;2、曲线斜率或者趋势;3、曲线上特殊点,如起点、终点、交点和拐点等;4、根据需要运用辅助线,如等温线、等压线等。
25.(2023·辽宁)某工厂采用如下工艺处理镍钴矿硫酸浸取液含(和)。实现镍、钴、镁元素的回收。
已知:
物质
回答下列问题:
(1)用硫酸浸取镍钴矿时,提高浸取速率的方法为   (答出一条即可)。
(2)“氧化”中,混合气在金属离子的催化作用下产生具有强氧化性的过一硫酸,中过氧键的数目为   。
(3)“氧化”中,用石灰乳调节,被氧化为,该反应的离子方程式为   (的电离第一步完全,第二步微弱);滤渣的成分为、   (填化学式)。
(4)“氧化”中保持空气通入速率不变,(Ⅱ)氧化率与时间的关系如下。体积分数为   时,(Ⅱ)氧化速率最大;继续增大体积分数时,(Ⅱ)氧化速率减小的原因是   。
(5)“沉钴镍”中得到的(Ⅱ)在空气中可被氧化成,该反应的化学方程式为   。
(6)“沉镁”中为使沉淀完全,需控制不低于   (精确至0.1)。
【答案】(1)适当增大硫酸浓度或适当升高温度或将镍钴矿粉碎增大接触面积
(2)NA
(3);Fe(OH)3
(4)9.0%;SO2有还原性,过多将会降低 的浓度,降低 (Ⅱ)氧化速率
(5)
(6)11.1
【知识点】氧化还原反应方程式的配平;化学反应速率的影响因素;难溶电解质的溶解平衡及沉淀转化的本质;物质的量的相关计算
【解析】【解答】(1)增大硫酸浓度、升高温度或将镍钴矿粉碎增大接触面积等,都可以提高化学反应速率
(2)根据H2SO5的结构,1个分子含有有个-O-O-键,所以1molH2SO5含有过氧键数目为NA
(3)Mn2+被H2SO3为二氧化锰,离子反应为:,在pH=4时,滤渣有二氧化锰和氢氧化铁;
(4)4)根据图示可知二氧化硫体积分数为0.9%时,Mn(Ⅱ)氧化速率最大;继续增大二氧化硫体积分数时,由于SO2有还原性,过多将会降低H2SO5的浓度,降低Mn(Ⅱ)氧化速率;
(5)“沉钻镍”中得到的Co(OH)2,在空气中可被氧化成CoO(OH),该反应的化学方程式为:
(6)氢氧化镁的Ksp=10-10.8, 当镁离子完全沉淀时,c(Mg2+)=10-5mol/L,根据Ksp可计算c(OH-)=10-2.9mol/L,根据Kw=10-14,c(H+)=10-11.1mol/L,所以溶液的pH=11.
【分析】流程题的一般思路是:
浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。要抓住一个关键点:一切反应或操作都是为获得产品而服务。
26.(2023·湖北) 是生产多晶硅的副产物。利用对废弃的锂电池正极材料进行氯化处理以回收Li、Co等金属,工艺路线如下:
回答下列问题:
(1)Co位于元素周期表第   周期,第   族。
(2)烧渣是LiCl、和的混合物,“500℃焙烧”后剩余的应先除去,否则水浸时会产生大量烟雾,用化学方程式表示其原因   。
(3)鉴别洗净的“滤饼3”和固体常用方法的名称是   。
(4)已知,若“沉钴过滤”的pH控制为10.0,则溶液中浓度为   。“850℃煅烧”时的化学方程式为   。
(5)导致比易水解的因素有   (填标号)。
a.Si-Cl键极性更大 b.Si的原子半径更大
c.Si-Cl键键能更大 d.Si有更多的价层轨道
【答案】(1)4;Ⅷ
(2)
(3)焰色反应
(4);
(5)abd
【知识点】氧化还原反应方程式的配平;难溶电解质的溶解平衡及沉淀转化的本质;焰色反应;元素周期表的结构及其应用
【解析】【解答】(1)Co是27号元素,元素周期表第8、9、10三个纵行合称第Ⅷ族,因此,其位于元素周期表第4周期、第Ⅷ族;
(2)四氯化硅与可水反应且能生成氯化氢和硅酸,故其原因是:四氯化硅遇水剧烈水解,生成硅酸和氯化氢,该反应的化学方程式:;
(3)常用焰色反应鉴别和,的焰色反应为紫红色,而的焰色反应为黄色。
(4)若“沉钴过滤”的pH控制为10.0,则溶液中OH-浓度为:,则Co2+浓度为:,
(5)850℃煅烧”时,Co(OH)2与O2反应生成Co3O4和水,反应方程式为:
(5)a.Si-Cl键极性更大,则 Si-Cl键更易断裂,因此,比易水解,a正确;
b.Si的原子半径更大,因此,中的共用电子对更加偏向于氯,从而导致Si-Cl键极性更大因此,比易水解,b正确;
c.C原子半径硅原子半径,C-Cl键长能比Si-Cl键长短,C-Cl键长能比Si-Cl键长大,c不正确;
d.Si有更多的价层轨道,因此更易与水电离的OH-形成化学键,从而导致比易水解,d正确;
【分析】由流程和题中信息可知,粗品LiCoO2与在500℃焙烧时生成氧气和烧渣,烧渣是LiCl、和的混合物;烧渣经水浸、过滤后得滤液1和滤饼1,滤饼1的主要成分是和;滤液1用氢氧化钠溶液沉钴,过滤后得滤饼2和滤液2(主要溶质为LiCl);滤饼2置于空气中在850℃煅烧得到;滤液2经碳酸钠溶液沉锂,得到滤液3和滤饼3,滤饼3为。
27.(2023·湖北)学习小组探究了铜的氧化过程及铜的氧化物的组成。回答下列问题:
(1)铜与浓硝酸反应的装置如下图,仪器A的名称为   ,装置B的作用为   。
(2)铜与过量反应的探究如下:
实验②中Cu溶解的离子方程式为   ;产生的气体为   。比较实验①和②,从氧化还原角度说明的作用是   。
(3)用足量NaOH处理实验②新制的溶液得到沉淀X,元素分析表明X为铜的氧化物,提纯干燥后的X在惰性氛围下加热,mgX完全分解为ng黑色氧化物Y,。X的化学式为   。
(4)取含X粗品0.0500g(杂质不参加反应)与过量的酸性KI完全反应后,调节溶液至弱酸性。以淀粉为指示剂,用标准溶液滴定,滴定终点时消耗标准溶液15.00mL。(已知:,)标志滴定终点的现象是   ,粗品中X的相对含量为   。
【答案】(1)具支试管;防倒吸
(2)Cu+H2O2+2H+= Cu2++2H2O;O2;既不是氧化剂,又不是还原剂
(3)CuO2
(4)溶液蓝色消失,且半分钟不恢复原来的颜色;72%
【知识点】氧化还原反应;氧化还原反应方程式的配平;化学方程式的有关计算;化学式及其计算
【解析】【解答】(1)由图可知,仪器A的名称为具支试管;铜和浓硝酸反应生成硝酸铜和二氧化氮,其中二氧化氮易溶于水,需要防倒吸,则装置B的作用为防倒吸;
(2)根据实验现象,铜片溶解,溶液变蓝,可知在酸性条件下铜和过氧化氢发生反应,生成硫酸铜,离子方程式为:Cu+H2O2+2H+= Cu2++2H2O,产生的气体为氧气,从化合价升降角度分析,H+既不是氧化剂也不是还原剂;
(3)设X的化学式为:CuOx,分解后生成的黑色物质为CuO,反应前后根据铜元素守恒,可得,解的x=2,所以X的化学式为:CuO2
(4)滴定结束的时候,单质碘消耗完,则标志滴定终点的现象是:溶液蓝色消失,且半分钟不恢复原来的颜色;在CuO2中铜为+2价,氧为-1价,根据反应方程式,可以得到关系式:,则n(CuO2)=×0.1mol/L×0.015L=0.000375mol,粗品中X的相对含量为
【分析】第(1)本实验目的是探究 铜的氧化过程及铜的氧化物的组成 ,铜与浓硝酸反应,铜被浓硝酸氧化,产生NO2气体,该气体极易溶于水且有毒,需要防止倒吸,并用氢氧化钠溶液吸收;
第(2)为探究铜与过氧化氢溶液反应原理探究,铜与过氧化氢溶液不直接反映,但是加入稀硫酸后,反应生成硫酸铜和氧气;
第(3)是探究氢氧化与硫酸铜反应生成铜氧化物探究;
第(4)为氧化还原反应滴定,找到被滴定物质与标准溶液关系即可计算。
28.(2023·湖北)纳米碗是一种奇特的碗状共轭体系。高温条件下,可以由分子经过连续5步氢抽提和闭环脱氢反应生成。的反应机理和能量变化如下:
回答下列问题:
(1)已知中的碳氢键和碳碳键的键能分别为和,H-H键能为。估算的   。
(2)图示历程包含   个基元反应,其中速率最慢的是第   个。
(3) 纳米碗中五元环和六元环结构的数目分别为   、   。
(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,该反应的平衡常数为   (用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(5) 及反应的(为平衡常数)随温度倒数的关系如图所示。已知本实验条件下,(R为理想气体常数,c为截距)。图中两条线几乎平行,从结构的角度分析其原因是   。
(6)下列措施既能提高反应物的平衡转化率,又能增大生成的反应速率的是   (填标号)。
a.升高温度 b.增大压强 c.加入催化剂
【答案】(1)+128
(2)3;3
(3)6;10
(4)
(5)在反应过程中,断裂和形成的化学键相同
(6)a
【知识点】反应热和焓变;活化能及其对化学反应速率的影响;化学平衡常数;化学平衡的计算
【解析】【解答】(1)和反应历程可以看出,中断裂了2根碳氢键,形成了1根碳碳键和形成一个H-H键,所以该过程反应热为:
(2)由反应历程可知,包含3个基元反应;其中第三个的活化能最大,反应速率最慢;
(3)由的结构分析,可知其中含有1个五元环,10个六元环,每脱两个氢形成一个五元环,脱氢过程中六元环数目不变,则总共含有6个五元环,10个六元环;
(4)反应过程中压强恒定为P0(即的初始压强),平衡转化率为α,设起始量为1mol,则根据信息列出三段式为
可得平衡时各物质分压:,,
带入压强平衡常数表达式:,可得
(5)图中两条线几乎平行,说明斜率几乎相等,根据(R为理想气体常数,c为截距)可知,斜率相等,则说明焓变相等,因为在反应过程中,断裂和形成的化学键相同;
(6)a.由反应历程可知,该反应为吸热反应,升温,反应正向进行,提高了平衡转化率反应速率也加快,a正确;
b.由化学方程式可知,该反应为正向体积增大的反应,加压,反应逆向进行,降低了平衡转化率
b不正确;
c.加入催化剂,平衡不移动,不能提高平衡转化率,c不正确;
【分析】(1)根据结构,有机物结构很复杂,只需要弄清楚反应断开和形成化学键即可,利用断开化学键吸收的能量减去形成化学键释放能量即可;
(2)根据反应历程可知,有几个峰就有几个历程,峰越高,代表基元反应活化能越大,越难进行;
(3)有分析可知,脱氢过程六元环数目不变,每脱去2个H形成一个五元环;
(4)根据三段式,求出各物质平衡时物质的量,计算物质的量分数,求出分压,带入压强平衡表达式即可;
(5)根据直线方程可知,斜率代表反应热,二者的斜率基本相同,数目两个反应热相同,进而说明反应断开和形成化学键数目相同
(6)根据化学平衡移动原理以及化学反应速率影响因素进行判断即可。
29.(2023·全国乙卷)LiMn2O4作为一种新型锂电池正极材料受到广泛关注。由菱锰矿(MnCO3,含有少量Si、Fe、Ni、Al等元素)制备LiMn2O4的流程如下:
已知:Ksp[Fe(OH)3]=2.8×10-39,Ksp[Al(OH)3]=1.3×10-33,Ksp[Ni(OH)2]=5.5×10-16。
回答下列问题:
(1)硫酸溶矿主要反应的化学方程式为   。为提高溶矿速率,可采取的措施   (举1例)。
(2)加入少量MnO2的作用是   。不宜使用H2O2替代MnO2,原因是   。
(3)溶矿反应完成后,反应器中溶液pH=4,此时c(Fe3+)=   mol·L-1;用石灰乳调节至pH≈7,除去的金属离子是   。
(4)加入少量BaS溶液除去Ni2+,生成的沉淀有   。
(5)在电解槽中,发生电解反应的离子方程式为   。随着电解反应进行,为保持电解液成分稳定,应不断   。电解废液可在反应器中循环利用。
(6)缎烧窑中,生成LiMn2O4反应的化学方程式是   。
【答案】(1)MnCO3+H2SO4=MnSO4+H2O+CO2↑;粉碎菱锰矿
(2)将Fe2+氧化为Fe3+;Fe3+可以催化H2O2分解
(3)2.8×10-9;Al3+
(4)BaSO4、NiS
(5)Mn2++2H2O H2↑+MnO2↓+2H+;加入MnSO4
(6)2Li2CO3+8MnO2 4LiMn2O4+2CO2↑+O2↑
【知识点】氧化还原反应方程式的配平;化学反应速率的影响因素;难溶电解质的溶解平衡及沉淀转化的本质
【解析】【解答】(1)加入硫酸后可以与碳酸锰反应,硫酸溶矿主要反应的化学方程式为:MnCO3+H2SO4=MnSO4+H2O+CO2↑;为提高溶矿速率,可以将菱锰矿粉碎,增大接触面积;
(2) MnO2具有氧化性,可以将Fe2+氧化为Fe3+,由于H2O2不稳定且Fe3+可以催化H2O2分解,所以不能用H2O2 进行氧化;
(3反应器中溶液pH=4,此时溶液中c(OH-)=1.0×10-10mol·L-1, 此时c(Fe3+)=,用石灰乳调节至pH≈7,溶液中c(OH-)=1.0×10-7mol·L-1,溶液中c(Al3+)=1.3×10-12mol·L-1,c(Ni2+)=5.5×10-4mol·L-1,c(Al3+)小于1.0×10-5,Al3+沉淀完全;
(4)加入少量BaS溶液除去Ni2+,溶液中发生的离子反应为:BaS+Ni2++SO42-=BaSO4↓+NiS↓,
(5)电解池溶液中阴极为Mn2+放电,阳极为H2O放电,电解总反应为:Mn2++2H2OH2↑+MnO2↓+2H+,电解过程中锰离子不断被消耗,为保持电解液成分稳定,需要补充MnSO4;
(6)煅烧窑中MnO2与Li2CO3发生反应生成LiMn2O4,反应的化学方程式为:2Li2CO3+8MnO24LiMn2O4+2CO2↑+O2↑。
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等。
30.(2023·全国乙卷)硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:
(1)在气氛中,的脱水热分解过程如图所示:
根据上述实验结果,可知   ,   。
(2)已知下列热化学方程式:
则的   。
(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。平衡时的关系如下图所示。时,该反应的平衡总压   、平衡常数   。随反应温度升高而   (填“增大”“减小”或“不变”)。
(4)提高温度,上述容器中进一步发生反应(Ⅱ),平衡时   (用表示)。在时,,则   ,   (列出计算式)。
【答案】(1)4;1
(2)(a+c-2b)
(3)3;2.25;增大
(4);46.26;
【知识点】盖斯定律及其应用;化学平衡常数;化学反应速率与化学平衡的综合应用;化学平衡的计算
【解析】【解答】(1)由图中信息可知,当失重比为19.4%时;变成,失去的为水的质量,可得,解的x=4,同理,当失重比为38.8%时,经过计算可得y=1;
(2)根据盖斯定律可知,①+③-②x2可得目标方程式,则
(3)通过图像可知,在温度为660K时,即为a点,=1.5KPa;由于SO3:SO2=1:1,=1.5KPa;
那么总压强为:3KPa;该反应压强平衡常数为:,由图中信息可知随着温度增大儿增大,所以Kp也增大;
(4)由于仅发生反应(Ⅰ)时=,当有反应(II)时,则有,整理可得
,在929K时,P总=84.6kPa,=35.7kPa,又有,联立解的,代入数据可得,=46.26kPa,,那么
【分析】解题技巧分析:平衡图像解题技巧:对应化学反应速率图像和化学平衡图像,应该注意下列几点:1、横轴坐标和纵坐标含义;2、曲线斜率或者趋势;3、曲线上特殊点,如起点、终点、交点和拐点等;4、根据需要运用辅助线,如等温线、等压线等。
31.(2023·新课标卷)铬和钒具有广泛用途。铬钒渣中铬和钒以低价态含氧酸盐形式存在,主要杂质为铁、铝、硅、磷等的化合物,从铬钒渣中分离提取铬和钒的一种流程如下图所示:
已知:最高价铬酸根在酸性介质中以存在,在碱性介质中以存在。
回答下列问题:
(1)煅烧过程中,钒和铬被氧化为相应的最高价含氧酸盐,其中含铬化合物主要为   (填化学式)。
(2)水浸渣中主要有和   。
(3)“沉淀”步骤调到弱碱性,主要除去的杂质是   。
(4)“除硅磷”步骤中,使硅、磷分别以和的形式沉淀,该步需要控制溶液的以达到最好的除杂效果,若时,会导致   ;时,会导致   。
(5)“分离钒”步骤中,将溶液调到1.8左右得到沉淀,在时,溶解为或在碱性条件下,溶解为或,上述性质说明具有_______(填标号)。
A.酸性 B.碱性 C.两性
(6)“还原”步骤中加入焦亚硫酸钠()溶液,反应的离子方程式为   。
【答案】(1)Na2CrO4
(2)Fe2O3
(3)SiO
(4)不能形成 沉淀;不能形成 沉淀
(5)C
(6)2Cr2O +3S2O +10H+=4Cr3++6SO +5H2O
【知识点】氧化还原反应方程式的配平;难溶电解质的溶解平衡及沉淀转化的本质;离子方程式的书写
【解析】【解答】(1)由分析可知,煅烧过程中,铬元素转化为铬酸钠;
(2)由分析可知,二氧化硅、氧化铁都不溶于水,所以,水浸渣为二氧化硅、氧化铁;
(3)沉淀步骤调pH到弱酸性的目的是将硅元素转化为硅酸沉淀,形成硅酸沉淀;
(4)加入硫酸镁溶液、硫酸铵溶液的目的是将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀;pH9时,二者应该都要沉淀,所以当pH>9时,可能为MgSiO3不能沉淀,pH<9时,可能MgNH4PO4不能沉淀;
(5))由题给可知,五氧化二钒水能与酸溶液反应生成盐和水,也能与碱溶液发生生成盐和水的两性氧化物,所以为两性氧化物;
(6)由题意可知,还原步骤中加入焦亚硫酸钠溶液的目的是将铬元素转化为铬离子,该离子反应为:
【分析】由题给流程可知,铬钒渣在氢氧化钠和空气中煅烧,将钒、铬、铝、硅、磷等元素转化为相应的最高价含氧酸盐,煅烧渣加入水浸取、过滤得到含有二氧化硅、氧化铁的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将硅元素转化为硅酸沉淀,过滤得到硅酸滤渣和滤液;向滤液中加入硫酸镁溶液、硫酸铵溶液将硅元素、磷元素转化为MgSiO3和MgNH4PO4沉淀,过滤得到含有MgSiO3、MgNH4PO4的滤渣和滤液;向滤液中加入稀硫酸调节溶液pH将钒元素转化为五氧化二钒,过滤得到五氧化二钒和滤液;向滤液中焦亚硫酸钠溶液将铬元素转化为三价铬离子,调节溶液pH将铬元素转化为氢氧化铬沉淀,过滤得到氢氧化铬。
32.(2023·全国甲卷) 是一种压电材料。以为原料,采用下列路线可制备粉状。
回答下列问题:
(1)“焙烧”步骤中碳粉的主要作用是   。
(2)“焙烧”后固体产物有、易溶于水的和微溶于水的。“浸取”时主要反应的离子方程式为   。
(3)“酸化”步骤应选用的酸是   (填标号)。
a.稀硫酸 b.浓硫酸 c.盐酸 d.磷酸
(4)如果焙烧后的产物直接用酸浸取,是否可行?   ,其原因是   。
(5)“沉淀”步骤中生成的化学方程式为   。
(6)“热分解”生成粉状钛酸钡,产生的   。
【答案】(1)做还原剂,将 还原
(2)S2-+Ca2+=CaS ↓
(3)c
(4)不可行; 也会与盐酸反应生成可溶于水的 ,导致 溶液中混有 杂质无法除去、最终所得产品的纯度降低
(5)
(6)
【知识点】氧化还原反应;化学反应速率的影响因素;盐类水解的原理;难溶电解质的溶解平衡及沉淀转化的本质
【解析】【解答】(1)碳粉的主要作用是做还原剂,将硫酸钡还原成BaS;
(2)易溶于水的BaS 与过量的CaCl2可以发生复分解反应生成硫化钙沉淀;S2-+Ca2+=CaS ↓
(3)由于硫酸钡和磷酸钡均不溶于的沉淀,所以只能加入盐酸酸化;选择c;
(4)如果焙烧后的产物直接用酸浸取是不可行的,其原因是:硫化钙与盐酸反应生成可溶于水的氯化钙,导致氯化钡溶液中混有氯化钙杂质无法除去、最终所得产品的纯度降低;
(5)有分析可知,沉淀过程为非氧化还原,即复分解反应,反应方程为:BaCl2+TiCl4+H2O+2(NH4)2C2O4=BaTi(C2O4)2↓+4NH4Cl+2HCl
(6)“热分解”生成粉状钛酸钡,为氧化还原反应,产物有CO2和CO,该反应的化学方程式为:
BaTi(C2O4)2=BaTiO3+2CO2↑+2CO↑
【分析】浏览全题,确定该流程的目的,看懂生产流程图;了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,并在下一步分析和解题中随时进行联系和调用;解析流程图并思考从原料到产品依次进行了什么反应,利用了什么原理。每一步操作进行到什么程度最佳,每一步除目标物质外还产生了什么杂质或副产物,杂质或副产物是怎样除去的等等。
33.(2023·全国甲卷)甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
(1)已知下列反应的热化学方程式:


反应③的   ,平衡常数   (用表示)。
(2)电喷雾电离等方法得到的(等)与反应可得。与反应能高选择性地生成甲醇。分别在和下(其他反应条件相同)进行反应,结果如下图所示。图中的曲线是   (填“a”或“b”。、时的转化率为   (列出算式)。
(3) 分别与反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以示例)。
(ⅰ)步骤Ⅰ和Ⅱ中涉及氢原子成键变化的是   (填“Ⅰ”或“Ⅱ”)。
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则与反应的能量变化应为图中曲线   (填“c”或“d”)。
(ⅲ)与反应,氘代甲醇的产量   (填“>”“<”或“=”)。若与反应,生成的氘代甲醇有   种。
【答案】(1); 或
(2)b;
(3)Ⅰ;c;<;2
【知识点】盖斯定律及其应用;化学平衡常数;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)根据盖斯定律可知,反应③=1/2(反应②-①),所以对应
;根据平衡常数表达式与热化学方程式之间的关系可知,对应化学平衡常数为:
(2)根据上述分析结合图像可知,b曲线为300K时,在300K,60s时,-lg()=0.1,则
=10-0.1,根据反应可知,生成的M+即为转化的MO+,则MO+的转化率为,
(3)(ⅰ)步骤Ⅰ涉及的是碳氢键的断裂和氢氧键的形成,步骤Ⅱ中涉及碳氧键形成
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则此时正反应活化能会增大,根据图示可知,MO+与CD4反应的能量变化应为图中曲线c;
MO+与CH2D2反应时,因直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则单位时间内产量会下降,则氘代甲醇的产量CH2D2OD<CHD2OH;根据反应机理可知,若MO+与CHD3反应,生成的氘代甲醇可能为CHD2OD或者CD3OH,共2种。
【分析】(1)观察已知方程式与目标方程式,消除无关物质,即可得到目标方程的热化学反应方程。
(2)和(3)关于解答平衡图像题目技巧:①横轴坐标和纵坐标含有;②曲线斜率或者趋势;③曲线上特殊点,如起点、终点、交点和拐点等;④根据需要运用辅助线,如等温线、等压线等。
34.(2023·浙江1月选考)“碳达峰·碳中和”是我国社会发展重大战略之一,还原是实现“双碳”经济的有效途径之一,相关的主要反应有:
Ⅰ:
Ⅱ:
请回答:
(1)有利于提高平衡转化率的条件是   。
A.低温低压B.低温高压C.高温低压D.高温高压
(2)反应的   ,   (用表示)。
(3)恒压、时,和按物质的量之比投料,反应经如下流程(主要产物已标出)可实现高效转化。
①下列说法正确的是   。
A.可循环利用,不可循环利用
B.过程ⅱ,吸收可促使氧化的平衡正移
C.过程ⅱ产生的最终未被吸收,在过程ⅲ被排出
D.相比于反应Ⅰ,该流程的总反应还原需吸收的能量更多
②过程ⅱ平衡后通入,测得一段时间内物质的量上升,根据过程ⅲ,结合平衡移动原理,解释物质的量上升的原因   。
(4)还原能力可衡量转化效率,(同一时段内与的物质的量变化量之比)。
①常压下和按物质的量之比投料,某一时段内和的转化率随温度变化如图1,请在图2中画出间R的变化趋势,并标明时R值   。
②催化剂X可提高R值,另一时段内转化率、R值随温度变化如下表:
温度/℃ 480 500 520 550
转化率/% 7.9 11.5 20.2 34.8
R 2.6 2.4 2.1 1.8
下列说法错误的是   
A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率
B.温度越低,含氢产物中占比越高
C.温度升高,转化率增加,转化率降低,R值减小
D.改变催化剂提高转化率,R值不一定增大
【答案】(1)C
(2);
(3)BC;通入分解平衡正移,导致增大,促进还原平衡正移
(4);C
【知识点】盖斯定律及其应用;化学平衡的影响因素;化学平衡移动原理;化学平衡转化过程中的变化曲线;化学平衡的计算
【解析】【解答】(1)反应Ⅰ为气体体积增大的吸热反应,反应Ⅱ为气体体积不变的吸热反应,升高温度,反应Ⅰ、Ⅱ平衡均右移,CH4平衡转化率增大;降低压强,平衡右移,CH4平衡转化率增大,故有利于提高平衡转化率的条件是高温低压;故答案为:C;
(2)已知:Ⅰ:
Ⅱ:
根据盖斯定律,由Ⅰ+Ⅱ2得反应;
故△H1+2△H2=+329,,故答案为: ; ;
(3)①A.先转化为Fe,然后Fe又转化为,可循环利用;CaCO3受热分解生成和CO2, 又与CO2反应生成CaCO3,也可循环利用,选项A不符合题意;
B.过程ⅱ,吸收使浓度降低,促进氧化的平衡正移,选项B符合题意;
C.过程ⅱ吸收而产生的最终未被吸收,在过程ⅲ被排出,选项C符合题意;
D.焓变只与起始物质的量有关,与过程无关,故相比于反应Ⅰ,该流程的总反应还原需吸收的能量一样多,选项D不符合题意;
故答案为:BC;
②通入分解平衡正移,导致增大,促进还原平衡正移,故过程ⅱ平衡后通入,测得一段时间内物质的量上升,故答案为: 通入分解平衡正移,导致增大,促进还原平衡正移;
(4)①600℃以下,甲烷转化率随温度升高增大程度大于二氧化碳转化率,该阶段R减小,600℃以上,二氧化碳转化率随温度升高增大程度大于甲烷转化率,该阶段R增大,根据图1可知时,转化率为100%,即=1mol, 转化率为60%,即=3mol60%=1.8mol,故==1.8,故间R的变化趋势如图:,故答案为:;
②A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率,使单位时间内反应Ⅱ中CO2的转化率增大,增大的倍数比大,则R提高,选项A符合题意;
B.根据表中数据可知,温度越低,转化率越小,而R越大,增大的倍数比大,含氢产物中占比越高,选项B符合题意;
C.温度升高,转化率增加,转化率也增大,且两个反应中的转化率均增大,增大倍数多,故R值增大,选项C不符合题意;
D.改变催化剂使反应有选择性按反应Ⅰ而提高转化率,若转化率减小,则R值不一定增大,选项D符合题意;
故答案为:C。
【分析】(1)有利于提高 平衡转化率,即有利于反应向生成二氧化碳的方向进行;
(2)根据盖斯定律,由Ⅰ+Ⅱ×2可得;
(3)①A.Fe3O4、CaO在过程ii中作反应物、过程iii中作生成物;
B.过程ⅱ,吸收使浓度降低;
C.过程ii中CaO吸收CO2而产生的H2O最终未被CaO吸收;
D.焓变只与反应物和生成物的总能量差有关,与反应过程无关;
②化学平衡移动原理的具体内容为:如果改变可逆反应的条件(如浓度、压强、温度等),化学平衡就被破坏,并向减弱这种改变的方向移动;
(4)①时,=1mol, 转化率为60%,即=3mol60%=1.8mol,;
②A.根据分析;
B.温度越低,CH4的转化率越低,R越大;
C.温度升高,CH4转化率增加,CO2转化率增大;
D.改变催化剂使反应有选择性按反应Ⅰ而提高转化率。

延伸阅读:

标签:

上一篇:第七单元燃料及其利用课堂练习卷(答案)-2023-2024九年级化学人教版上册

下一篇:近三年高考化学真题分类汇编:卤族与氮族及其应用