2023年高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.的展开式中的系数为( )
A.-30 B.-40 C.40 D.50
2.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.
A.360 B.240 C.150 D.120
3.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面,,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( )
A. B.3 C. D.
4.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )
A. B. C. D.
5.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
6.设等比数列的前项和为,则“”是“”的( )
A.充分不必要 B.必要不充分
C.充要 D.既不充分也不必要
7.已知命题若,则,则下列说法正确的是( )
A.命题是真命题
B.命题的逆命题是真命题
C.命题的否命题是“若,则”
D.命题的逆否命题是“若,则”
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )
A. B. C. D.
9.已知函数,则( )
A. B.1 C.-1 D.0
10.已知数列的前项和为,且,,,则的通项公式( )
A. B. C. D.
11.设,,则“”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
12.已知,都是偶函数,且在上单调递增,设函数,若,则( )
A.且
B.且
C.且
D.且
二、填空题:本题共4小题,每小题5分,共20分。
13.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.
获胜概率 — 0.4 0.3 0.8
获胜概率 0.6 — 0.7 0.5
获胜概率 0.7 0.3 — 0.3
获胜概率 0.2 0.5 0.7 —
则队获得冠军的概率为______.
14.已知集合,若,且,则实数所有的可能取值构成的集合是________.
15.在四面体中, 分别是的中点.则下述结论:
①四面体的体积为;
②异面直线所成角的正弦值为;
③四面体外接球的表面积为;
④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.
其中正确的有_____.(填写所有正确结论的编号)
16.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数().
(1)讨论的单调性;
(2)若对,恒成立,求的取值范围.
18.(12分)已知函数,.
(1)当时,判断是否是函数的极值点,并说明理由;
(2)当时,不等式恒成立,求整数的最小值.
19.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线与平面所成角的正弦值.
20.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.
21.(12分)已知.
(1)解关于x的不等式:;
(2)若的最小值为M,且,求证:.
22.(10分)如图,在四棱锥中,底面为菱形,底面,.
(1)求证:平面;
(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
先写出的通项公式,再根据的产生过程,即可求得.
【详解】
对二项式,
其通项公式为
的展开式中的系数
是展开式中的系数与的系数之和.
令,可得的系数为;
令,可得的系数为;
故的展开式中的系数为.
故选:C.
【点睛】
本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.
2、C
【解析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.
【详解】
分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.
∴共有结对方式60+90=150种.
故选:C.
【点睛】
本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.
3、D
【解析】
建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值.
【详解】
如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值.
设,则,化简得:,
则,解得:,
即点的轨迹上的点到的距离的最小值是.
故选:.
【点睛】
本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.
4、D
【解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.
【详解】
由已知得,则.
因为,数列是单调递增数列,
所以,则,
化简得,所以.
故选:D.
【点睛】
本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.
5、B
【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【点睛】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
6、A
【解析】
首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.
【详解】
为等比数列,
若成立,有,
因为恒成立,
故可以推出且,
若成立,
当时,有,
当时,有,因为恒成立,所以有,
故可以推出,,
所以“”是“”的充分不必要条件.
故选:A.
【点睛】
本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.
7、B
【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.
【详解】
解不等式,解得,则命题为假命题,A选项错误;
命题的逆命题是“若,则”,该命题为真命题,B选项正确;
命题的否命题是“若,则”,C选项错误;
命题的逆否命题是“若,则”,D选项错误.
故选:B.
【点睛】
本题考查四种命题的关系,考查推理能力,属于基础题.
8、B
【解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.
【详解】
解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,
其和等于16的结果,共2种等可能的结果,
故概率.
故选:B.
【点睛】
古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.
9、A
【解析】
由函数,求得,进而求得的值,得到答案.
【详解】
由题意函数,
则,所以,故选A.
【点睛】
本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.
10、C
【解析】
利用证得数列为常数列,并由此求得的通项公式.
【详解】
由,得,可得().
相减得,则(),又
由,,得,所以,所以为常
数列,所以,故.
故选:C
【点睛】
本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.
11、A
【解析】
根据对数的运算分别从充分性和必要性去证明即可.
【详解】
若, ,则,可得;
若,可得,无法得到,
所以“”是“”的充分而不必要条件.
所以本题答案为A.
【点睛】
本题考查充要条件的定义,判断充要条件的方法是:
① 若为真命题且为假命题,则命题p是命题q的充分不必要条件;
② 若为假命题且为真命题,则命题p是命题q的必要不充分条件;
③ 若为真命题且为真命题,则命题p是命题q的充要条件;
④ 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.
⑤ 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
12、A
【解析】
试题分析:由题意得,,
∴,,
∵,∴,∴,
∴若:,,∴,
若:,,∴,
若:,,∴,
综上可知,同理可知,故选A.
考点:1.函数的性质;2.分类讨论的数学思想.
【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.
二、填空题:本题共4小题,每小题5分,共20分。
13、0.18
【解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.
【详解】
由表中信息可知,胜C的概率为;
若B进入决赛,B胜D的概率为,则A胜B的概率为;
若D进入决赛,D胜B的概率为,则A胜D的概率为;
由相应的概率公式知,则A获得冠军的概率为.
故答案为:0.18
【点睛】
本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.
14、.
【解析】
化简集合,由,以及,即可求出结论.
【详解】
集合,若,
则的可能取值为,0,2,3,
又因为,
所以实数所有的可能取值构成的集合是.
故答案为:.
【点睛】
本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.
15、①③④.
【解析】
补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.
【详解】
根据四面体特征,可以补图成长方体设其边长为,
,解得
补成长,宽,高分别为的长方体,在长方体中:
①四面体的体积为,故正确
②异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;
③四面体外接球就是长方体的外接球,半径,其表面积为,故正确;
④由于,故截面为平行四边形,可得,
设异面直线与所成的角为,则,算得,
.故正确.
故答案为:①③④.
【点睛】
此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.
16、4
【解析】
根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解.
【详解】
由题意,函数,且,,
可得,
,
又由,可得为常数列,且,
数列表示首项为4,公差为2的等差数列,所以,
其中数列满足,
所以,
所以,
又由,
可得数列的前n项和为,
数列的前n项和为,
所以数列的前项和为,满足,
所以,即,
又由表示不超过实数的最大整数,所以.
故答案为:4.
【点睛】
本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)①当时,在上单调递减,在上单调递增;②当时, 在上单调递增;
(2).
【解析】
(1)求出函数的定义域和导函数, ,对讨论,得导函数的正负,得原函数的单调性;(2)法一: 由得,
分别运用导函数得出函数(),的单调性,和其函数的最值,可得 ,可得的范围;
法二:由得,化为令(),研究函数的单调性,可得的取值范围.
【详解】
(1)的定义域为,,
①当时,由得,得,
在上单调递减,在上单调递增;
②当时,恒成立,在上单调递增;
(2)法一: 由得,
令(),则,在上单调递减,
,,即,
令,
则,在上单调递增,,在上单调递减,所以,即,
(*)
当时,,(*)式恒成立,即恒成立,满足题意
法二:由得,,
令(),则,在上单调递减,
,,即,
当时,由(Ⅰ)知在上单调递增,恒成立,满足题意
当时,令,则,所以在上单调递减,
又,当时,,,使得,
当时,,即,
又,,,不满足题意,
综上所述,的取值范围是
【点睛】
本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.
18、(1)是函数的极大值点,理由详见解析;(2)1.
【解析】
(1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点;
(2)利用题目已有条件得,再证明时,不等式 恒成立,即证,从而可知整数的最小值为1.
【详解】
解:(1)当时,.
令,则
当时,.
即在内为减函数,且
∴当时,;当时,.
∴在内是增函数,在内是减函数.
综上,是函数的极大值点.
(2)由题意,得,即.
现证明当时,不等式成立,即.
即证
令
则
∴当时,;当时,.
∴在内单调递增,在内单调递减,
的最大值为.
∴当时,.
即当时,不等式成立.
综上,整数的最小值为.
【点睛】
本题考查学生利用导数处理函数的极值,最值,判断函数的单调性,由此来求解函数中的参数的取值范围,对学生要求较高,然后需要学生能构造新函数处理恒成立问题,为难题
19、(1)证明见解析,是,,,,;(2)
【解析】
(1)根据是球的直径,则,又平面, 得到,再由线面垂直的判定定理得到平面,,进而得到,再利用线面垂直的判定定理得到平面.
(2)以A为原点,,,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.
【详解】
(1)因为是球的直径,则,
又平面,
∴,.∴平面,
∴,∴平面.
根据证明可知,四面体是鳖臑.
它的每个面的直角分别是,,,.
(2)如图,
以A为原点,,,所在直线为x,y,z轴建立直角坐标系,
则,,,,.
M为中点,从而.
所以,设,
则.
由,
得.
由得,即.
所以.
设平面的一个法向量为.
由.
取,,,得到.
记与平面所成角为θ,
则.
所以直线与平面所成的角的正弦值为.
【点睛】
本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.
20、(1);(2)详见解析.
【解析】
(1)由椭圆离心率、系数关系和已知点坐标构建方程组,求得,代入标准方程中即可;
(2)依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,,通过联立直线方程与椭圆方程化简整理和中点的坐标表示用含k的表达式表示,,进而表示;由韦达定理表示根与系数的关系进而表示用含k的表达式表示,最后做比即得证.
【详解】
(1)设椭圆的焦距为,则,即,所以.
依题意,,即,解得,
所以,.
所以椭圆的标准方程为.
(2)证明:依题意,直线的斜率存在,且不为0,设其为,
则直线的方程为,设,.
与椭圆联立整理得,
故
所以,,
所以.
又
,
所以为定值,得证.
【点睛】
本题考查由离心率求椭圆的标准方程,还考查了椭圆中的定值问题,属于较难题.
21、(1);(2)证明见解析.
【解析】
(1)分类讨论求解绝对值不等式即可;
(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.
【详解】
(1)当时,等价于,该不等式恒成立,
当时,等价于,该不等式解集为,
当时,等价于,解得,
综上,或,
所以不等式的解集为.
(2),
易得的最小值为1,即
因为,,,
所以,,,
所以
,
当且仅当时等号成立.
【点睛】
本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.
22、(1)证明见解析(2)
【解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;
(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.
【详解】
(1)证明:底面为菱形,,
底面,平面,
又,平面,
平面;
(2)解:,,为等边三角形,
.
底面,是直线与平面所成的角为,
在中,由,解得.
如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴
建立空间直角坐标系.
则,,,,.
,,,.
设平面与平面的一个法向量分别为,.
由,取,得;
由,取,得.
.
平面与平面所成锐二面角的余弦值为.
【点睛】
本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.