2023年高考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()的部分图象如图所示,且,则的最小值为( )
A. B.
C. D.
2.已知函数,若所有点,所构成的平面区域面积为,则( )
A. B. C.1 D.
3.已知,且,则( )
A. B. C. D.
4.已知集合则( )
A. B. C. D.
5.设等差数列的前n项和为,若,则( )
A. B. C.7 D.2
6.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )
A.60种 B.70种 C.75种 D.150种
7.已知满足,则的取值范围为( )
A. B. C. D.
8.若复数满足,其中为虚数单位,是的共轭复数,则复数( )
A. B. C.4 D.5
9.设函数恰有两个极值点,则实数的取值范围是( )
A. B.
C. D.
10.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为( )
A. B. C. D.
11.已知是等差数列的前项和,,,则( )
A.85 B. C.35 D.
12.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.
14.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.
15.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.
16.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知不等式对于任意的恒成立.
(1)求实数m的取值范围;
(2)若m的最大值为M,且正实数a,b,c满足.求证.
18.(12分)已知三棱柱中,,是的中点,,.
(1)求证:;
(2)若侧面为正方形,求直线与平面所成角的正弦值.
19.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.
(1)证明:;
(2)求直线与平面所成角的正弦值.
20.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.
(1)证明:;
(2)求二面角的余弦值.
21.(12分)已知.
(1)若是上的增函数,求的取值范围;
(2)若函数有两个极值点,判断函数零点的个数.
22.(10分)等比数列中,.
(Ⅰ)求的通项公式;
(Ⅱ)记为的前项和.若,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.
【详解】
由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,
∴的最小值是.
故选:A.
【点睛】
本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.
2、D
【解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.
【详解】
解:,因为,,
所以,在上单调递增,
则在上的值域为,
因为所有点所构成的平面区域面积为,
所以,
解得,
故选:D.
【点睛】
本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.
3、B
【解析】
分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.
详解:根据题中的条件,可得为锐角,
根据,可求得,
而,故选B.
点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.
4、B
【解析】
解对数不等式可得集合A,由交集运算即可求解.
【详解】
集合解得
由集合交集运算可得,
故选:B.
【点睛】
本题考查了集合交集的简单运算,对数不等式解法,属于基础题.
5、B
【解析】
根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.
【详解】
因为,所以,所以,
所以,
故选:B
【点睛】
本题主要考查等差数列的性质及前项和公式,属于基础题.
6、C
【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.
【详解】
解:根据题意,从6名男干部中选出2名男干部,有种取法,
从5名女干部中选出1名女干部,有种取法,
则有种不同的选法;
故选:C.
【点睛】
本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.
7、C
【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.
【详解】
解:设,则的几何意义为点到点的斜率,
作出不等式组对应的平面区域如图:
由图可知当过点的直线平行于轴时,此时成立;
取所有负值都成立;
当过点时,取正值中的最小值,,此时;
故的取值范围为;
故选:C.
【点睛】
本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.
8、D
【解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.
【详解】
解:复数z=a+bi,a、b∈R;
∵2z,
∴2(a+bi)﹣(a﹣bi)=,
即,
解得a=3,b=4,
∴z=3+4i,
∴|z|.
故选D.
【点睛】
本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.
9、C
【解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.
【详解】
由题意知函数的定义域为,
.
因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.
令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.
故选:C
【点睛】
本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.
10、D
【解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.
【详解】
如图,
因为为等腰三角形,,
所以,,
,
又,
,
解得,
所以双曲线的渐近线方程为,
故选:D
【点睛】
本题主要考查了双曲线的简单几何性质,属于中档题.
11、B
【解析】
将已知条件转化为的形式,求得,由此求得.
【详解】
设公差为,则,所以,,,.
故选:B
【点睛】
本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.
12、D
【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.
【详解】
由题,得,
因为的图象与直线的两个相邻交点的距离等于,
所以函数的最小正周期,则,
所以,
当时,,
所以是函数的一条对称轴,
故选:D
【点睛】
本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.
二、填空题:本题共4小题,每小题5分,共20分。
13、60
【解析】
根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.
【详解】
如图所示:设双曲线的半焦距为.
因为,,,所以由勾股定理,得.
所以.
因为是上一个靠近点的三等分点,是的中点,所以.
由双曲线的定义可知:,所以.
在中,由余弦定理可得
,所以,整理可得.
所以,解得.所以.
则.则,得.
则的底边上的高为.
所以
.
故答案为:60
【点睛】
本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.
14、
【解析】
分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.
【详解】
分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;
②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;
③从到,由①可知有种走法.
由分步乘法计数原理可知,共有种不同的走法.
故答案为:.
【点睛】
本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.
15、
【解析】
写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.
【详解】
解:直线的方程为,即.
圆的圆心
到直线的距离,
由的面积是的面积的2倍的点,有且仅有一对,
可得点到的距离是点到直线的距离的2倍,
可得过圆的圆心,如图:
由,解得.
故答案为:.
【点睛】
本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.
16、2
【解析】
根据比赛场次,分析,画出图象,计算结果.
【详解】
画图所示,可知目前(五)班已经赛了2场.
故答案为:2
【点睛】
本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)证明见解析
【解析】
(1)法一:,,得,则,由此可得答案;
法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;
(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.
【详解】
解:(1)法一:(当且仅当时取等号),
又(当且仅当时取等号),
所以(当且仅当时取等号),
由題意得,则,解得,
故的取值范围是;
法二:因为对于任意恒有成立,即,
令,易知是偶函数,且时为增函数,
所以,即,则,解得,
故的取值范围是;
(2)由(1)知,,即,
∴
,
故不等式成立.
【点睛】
本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.
18、(1)证明见解析(2)
【解析】
(1)取的中点,连接,,证明平面得出,再得出;
(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.
【详解】
(1)证明:取的中点,连接,,
,,,
,
,故,
又,,平面,
平面,
,
,分别是,的中点,,
.
(2)解:四边形是正方形,,
又,,平面,
平面,
在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,
则,0,,,1,,,2,,,0,,
,1,,,2,,,1,,
设平面的法向量为,,,则,即,
令可得:,,,
,.
直线与平面所成角的正弦值为,.
【点睛】
本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.
19、(1)见证明;(2)
【解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.
【详解】
(1)证明:取的中点,连.
∵,
∴.
又,
∴.
在中,,
∴.
又,
∴平面,
又平面,
∴.
(2)解法1:取的中点,连结,
∵,
∴,
又,
∴.
又由题意得为等边三角形,
∴,
∵,
∴平面.
作,则有平面,
∴就是直线与平面所成的角.
设,则,
在等边中,.
又在中,,故.
在中,由余弦定理得,
∴,
∴直线与平面所成角的正弦值为.
解法2:由题意可得,建立如图所示的空间直角坐标系.
不妨设,则在直角三角形中,可得,
作于,则有平面几何知识可得,
∴.
又可得,.
∴,.
设平面的一个法向量为,
由,得,
令,则得.
又,
设直线与平面所成的角为,
则.
所以直线与平面所成角的正弦值为.
【点睛】
利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量.解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.求解时注意向量的夹角与线面角间的关系.
20、(1)见解析;(2)
【解析】
(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;
(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;
【详解】
(1)取的中点,连结,
因为为中点,,,
所以,,∴为平行四边形,
所以,
又因为,
所以;
(2)由题及(1)易知,,两两垂直,
所以以,,为,,轴建立空间直角坐标系,
则,,,,,,
易知面的法向量为
设面的法向量为
则
可得
所以,
如图可知二面角为锐角,所以余弦值为
【点睛】
本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.
21、 (1) (2) 三个零点
【解析】
(1) 由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.
【详解】
(1)由得,
由题意知恒成立,即,设,,
时,递减,时,,递增;
故,即,故的取值范围是.
(2)当时,单调,无极值;
当时,,
一方面,,且在递减,所以在区间有一个零点.
另一方面,,设 ,则,从而
在递增,则,即,又在递增,所以
在区间有一个零点.
因此,当时在和各有一个零点,将这两个零点记为,
,当时,即;当时,即
;当时,即:从而在递增,在
递减,在递增;于是是函数的极大值点,是函数的极小值点.
下面证明:,
由得,即,由
得 ,
令,则,
①当时,递减,则,而,故;
②当时,递减,则,而,故;
一方面,因为,又,且在递增,所以在
上有一个零点,即在上有一个零点.
另一方面,根据得,则有:
,
又,且在递增,故在上有一个零点,故在
上有一个零点.
又,故有三个零点.
【点睛】
本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.
22、 (Ⅰ)或(Ⅱ)12
【解析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;
(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.
【详解】
(1)设数列的公比为,
,
,
或.
(2)时,,解得;
时,,
无正整数解;
综上所述.
【点睛】
本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.