2023年高考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于( )
A. B. C. D.
2.在中,“”是“为钝角三角形”的( )
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件
3.已知函数,则( )
A. B.1 C.-1 D.0
4.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )
A. B. C.1 D.
5. “且”是“”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
6.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为( )
A. B. C. D.
7.在条件下,目标函数的最大值为40,则的最小值是( )
A. B. C. D.2
8.关于函数在区间的单调性,下列叙述正确的是( )
A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减
9.已知,,则等于( ).
A. B. C. D.
10.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )
A.45 B.50 C.55 D.60
11.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为( )
A.8 B.16 C. D.
12.某几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,.若,则实数a的值是______.
14.曲线f(x)=(x2 +x)lnx在点(1,f(1))处的切线方程为____.
15.函数的最小正周期是_______________,单调递增区间是__________.
16.如图所示,平面BCC1B1⊥平面ABC,ABC=120,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.
(1)求椭圆的方程;
(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.
18.(12分)已知抛物线,直线与交于,两点,且.
(1)求的值;
(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.
19.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.
(1)当为何值时,公路的长度最短 求出最短长度;
(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度.
20.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.
(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.
女生 男生 总计
获奖
不获奖
总计
附表及公式:
其中,.
21.(12分)已知的内角,,的对边分别为,,,且.
(1)求;
(2)若的面积为,,求的周长.
22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值以及此时的直角坐标.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,
建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.
【详解】
如图所示的直四棱柱,,取中点,
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,
建立空间直角坐标系.
设,则,
.
设平面的法向量为,
则取,
得.
设直线与平面所成角为,
则,
,
∴直线与平面所成角的正切值等于
故选:D
【点睛】
本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.
2、C
【解析】
分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.
详解:由题意可得,在中,因为,
所以,因为,
所以,,
结合三角形内角的条件,故A,B同为锐角,因为,
所以,即,所以,
因此,所以是锐角三角形,不是钝角三角形,
所以充分性不满足,
反之,若是钝角三角形,也推不出“,故必要性不成立,
所以为既不充分也不必要条件,故选D.
点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.
3、A
【解析】
由函数,求得,进而求得的值,得到答案.
【详解】
由题意函数,
则,所以,故选A.
【点睛】
本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.
4、D
【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.
【详解】
由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.
故选:D
【点睛】
本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.
5、A
【解析】
画出“,,,所表示的平面区域,即可进行判断.
【详解】
如图,“且”表示的区域是如图所示的正方形,
记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,
显然是的真子集,所以答案是充分非必要条件,
故选:.
【点睛】
本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.
6、B
【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.
【详解】
如图所示:
由对称性可得:为的中点,且,
所以,
因为,所以,
故而由几何性质可得,即,
故渐近线方程为,
故选B.
【点睛】
本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.
7、B
【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.
【详解】
如图所示,画出可行域和目标函数,根据图像知:
当时,有最大值为,即,故.
.
当,即时等号成立.
故选:.
【点睛】
本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.
8、C
【解析】
先用诱导公式得,再根据函数图像平移的方法求解即可.
【详解】
函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.
故选:C
【点睛】
本题考查三角函数的平移与单调性的求解.属于基础题.
9、B
【解析】
由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.
【详解】
由题意得 ,
又,所以,结合解得,
所以 ,
故选B.
【点睛】
本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.
10、D
【解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.
【详解】
根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,
∴样本容量(即该班的学生人数)是60(人).
故选:D.
【点睛】
本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题
11、D
【解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.
【详解】
根据题意,画出几何关系如下图所示:
设四边形的内切圆半径为,双曲线半焦距为,
则
所以,
四边形的内切圆面积为,
则,解得,
则,
即
故由基本不等式可得,即,
当且仅当时等号成立.
故焦距的最小值为.
故选:D
【点睛】
本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.
12、D
【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.
【详解】
由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.
故选:D.
【点睛】
本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、9
【解析】
根据集合交集的定义即得.
【详解】
集合,,,
,则a的值是9.
故答案为:9
【点睛】
本题考查集合的交集,是基础题.
14、
【解析】
求函数的导数,利用导数的几何意义即可求出切线方程.
【详解】
解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.
【点睛】
本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.
15、 ,,
【解析】
化简函数的解析式,利用余弦函数的图象和性质求解即可.
【详解】
函数,
最小正周期,
令,,可得,,
所以单调递增区间是,,.
故答案为:,,,.
【点睛】
本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题.
16、
【解析】
将平移到和相交的位置,解三角形求得线线角的余弦值.
【详解】
过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.
【点睛】
本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)存在,
【解析】
(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;
(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.
【详解】
(1)由题可得∴,所以椭圆的方程
(2)由题知,设,直线的斜率存在设为,
则与椭圆联立得
,,∴,,∴
若以为直径的圆经过点,
则,∴,
化简得,∴,解得或
因为与不重合,所以舍.
所以直线的方程为.
【点睛】
本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.
18、(1);(2)见解析
【解析】
(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.
(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.
【详解】
(1)由,消去可得,
设,,则,.
,
解得或(舍去),
.
(2)证明:由(1)可得,设,
所以直线的方程为,
当时,,则,
代入抛物线方程,可得,,
所以直线的斜率,
直线的方程为,
整理可得,故直线过定点.
【点睛】
本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.
19、(1)当时,公路的长度最短为千米;(2)(千米).
【解析】
(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;
(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.
【详解】
(1)由题可知,设点的坐标为,
又,
则直线的方程为,
由此得直线与坐标轴交点为:,
则,故,
设,则.
令,解得=10.
当时,是减函数;
当时,是增函数.
所以当时,函数有极小值,也是最小值,
所以, 此时.
故当时,公路的长度最短,最短长度为千米.
(2) 在中,,,
所以,
所以,
根据正弦定理
,
,
,
,
又,
所以.
在中,,,
由勾股定理可得,
即,
解得,(千米).
【点睛】
本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.
20、(Ⅰ),;(Ⅱ)详见解析.
【解析】
(Ⅰ)根据概率的性质知所有矩形的面积之和等于列式可解得;
(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得.
【详解】
解:(Ⅰ),
.
(Ⅱ)由频率分布直方图知样本中获奖的人数为,不获奖的人数为,
列联表如下:
女生 男生 总计
获奖
不获奖
总计
因为,
所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关.”
【点睛】
本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.
21、(1);(2).
【解析】
(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;
(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.
【详解】
(1)由题设得.
由正弦定理得
∵∴,
所以或.
当,(舍)
故,
解得.
(2),从而.
由余弦定理得
.
解得.
∴.
故三角形的周长为.
【点睛】
本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.
22、(1):,:;(2),此时.
【解析】
试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
试题解析: (1)的普通方程为,的直角坐标方程为.
(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
考点:坐标系与参数方程.
【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.