4.2原电池和化学电源同步练习(含解析)2022-2023上学期高二化学沪科版(2020)选择性必修1

4.2原电池和化学电源同步练习
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.用于驱动潜艇的液氨—液氧燃料电池示意图如图所示。下列有关说法不正确的是
A.电极2发生还原反应
B.电池工作时,Na+向负极移动
C.电子由电极1经外电路流向电极2
D.电极1的电极反应为
2.我国科学家开发了FeCo-NSC催化剂,设计一种新型锌-空气电池,装置如图所示。
放电时,下列说法错误的是
A.“FeCo-NSC”能降低正极反应的活化能
B.正极反应式为
C.向Zn极附近迁移
D.右侧电极电势比左侧电极高
3.有一种纸电池只需滴上两滴水即可激活,为一个带有 LED 的闹钟供电 1 小时。如图所示,该电池的纸片上分布着氯化钠晶体,正面印有含有石墨薄片的油墨,反面印有含锌粉的油墨。以下说法错误的是
A.石墨上发生还原反应
B.电流从石墨经闹钟流向锌
C.NaCl不损耗
D.该电池有质量小、柔韧性好、可重复利用的优点
4.某科研团队提出了一种碱—酸Zn-—混合充放电电池,其放电时的工作原理如图所示,下列说法正确的是
A.放电时,M极为正极
B.放电时,从中间室移向左极室
C.充电时,N极发生的电极反应式为
D.充电时,M极质量每增加32.5g,外电路中通过2mol电子
5.某科研机构研发的NO—空气燃料电池的工作原理如图所示,下列叙述正确的是
A.a电极为电池负极
B.电池工作时透过质子交换膜从右向左移动
C.b电极的电极反应:
D.当外电路中通过电子时,a电极处消耗
6.我国科研工作者发明了一种高性能的水系锰基锌电池[],电池工作示意图如图,该电池工作一段时间后,的浓度增大。下列说法正确的是
A.电极X的材料为Zn
B.膜a、b分别为阳、阴离于交换膜
C.正极反应式为
D.当的物质的量增大0.1mol时,电路中转移0.4mol电子
7.“打赢蓝天保卫战”,近年来对大气污染防治的要求日益提高。二氧化硫—空气质子交换膜燃料电池实现了制稀硫酸、发电、环保三位一体的结合,原理如图所示。下列说法错误的是
A.该电池放电时电子从电极经过外电路流到电极
B.电极附近发生的反应为
C.电极附近发生的反应为
D.相同条件下,放电过程中消耗的和的体积比为
8.下列电池不属于二次电池的是
A B C D
手机用锂电池 电动汽车用电池 铅酸蓄电池 锌锰干电池
A.A B.B C.C D.D
9.一种酸性生物燃料电池应用的原理如图所示,下列说法错误的是
A.Ca2+、Mg2+透过离子交换膜X移向a极
B.负极反应式为C6H12O6+6H2O-24e-=6CO2↑+24H+
C.1molC6H12O6转化为CO2,迁移到正极区的离子总数为12NA
D.该装置可用于硬水软化,同时还可产生电能
10.一种燃料电池中发生的化学反应为:在酸性溶液中甲醇与氧作用生成水和二氧化碳。该电池负极发生的反应是
A.
B.
C.
D.
11.下列事实不用电化学理论解释的是
A.轮船水线以下的船壳上装一定数量的锌块
B.铝片不用特殊方法保护
C.纯锌与稀硫酸反应时,滴入少量硫酸铜溶液后速率加快
D.镀锌铁比镀锡铁耐用
12.用选项中的电极、溶液和如图所示装置可组成原电池。下列现象或结论的叙述正确的是
选项 电极a 电极b A溶液 B溶液 现象或结论
A Cu Zn CuSO4 ZnSO4 一段时间后,a增加的质量与b减少的质量相等
B Cu Zn 稀H2SO4 ZnSO4 盐桥中阳离子向b极移动
C Fe C NaCl FeCl3 外电路电子转移方向:b→a
D C C FeCl3 KI、淀粉混合液 若开始时只增大FeCl3溶液浓度,b极附近溶液变蓝的速度加快
A.A B.B C.C D.D
13.某原电池的总反应离子方程式为:,不能实现该反应的原电池为
A.正极为Cu,负极为Fe,电解质溶液为FeCl3溶液
B.正极为Fe,负极为Zn,电解质溶液为Fe2(SO4)3溶液
C.正极为C,负极为Fe,电解质溶液为Fe2(SO4)3溶液
D.正极为Ag,负极为Fe,电解质溶液为Fe(NO3)3溶液
14.研究人员最近发明了一种“水”电池,这种电池能利用淡水与海水之间含盐量差别进行发电,在海水中电池总反应可表示为:5MnO2+2Ag+2NaCl=Na2Mn5O10+2AgCl。下列“水”电池在海水中放电时的有关说法正确的是
A.正极反应式:Ag+Cl--e-=AgCl
B.Na+不断向“水”电池的负极移动
C.每生成1molNa2Mn5O10转移2mol电子
D.AgCl是还原产物
15.有A、B、D、E四种金属,当A、B组成原电池时,电子流动方向A→B;当A、D组成原电池时,A为正极;B与E构成原电池时,电极反应式为:E2++2e-=E,B-2e-=B2+则A、B、D、E金属性由强到弱的顺序为
A.A﹥B﹥E﹥D B.A﹥B﹥D﹥E
C.D﹥E﹥A﹥B D.D﹥A﹥B﹥E
二、实验题
16.某研究性学习小组欲探究原电池的形成条件,按如图所示装置进行实验并得到下表实验结果:
实验序号 A B 烧杯中的液体 灵敏电流表指针是否偏转
1 Zn Zn 乙醇 无
2 Zn Cu 稀硫酸 有
3 Zn Cu 稀硫酸 无
4 Zn Cu 苯 无
5 Cu C 氯化钠溶液 有
6 Mg Al 氢氧化钠溶液 有
分析上述实验,回答下列问题:
(1)实验2中电流由________极流向________极(填“A”或“B”)。
(2)实验6中电子由B极流向A极,表明负极是________(填“镁”或“铝”)电极。
(3)实验5表明________(填字母序号,下同)。
A.铜在潮湿空气中不会被腐蚀
B.铜的腐蚀是自发进行的(4)分析上表有关信息,下列说法不正确的是________。
A.金属活动顺序表中,活泼性强的金属一定作负极
B.失去电子的电极是负极
C.烧杯中的液体必须是电解质溶液
D.原电池中,浸入同一电解质溶液中的两个电极,是活泼性不同的两种金属(或其中一种非金属)
17.以下是有关SO2、Cl2的性质实验。
(1)某小组设计如图所示的装置图(图中夹持和加热装置略去),分别研究SO2和Cl2的性质。
①若从左端分别通入SO2和Cl2,装置A中观察到的现象_______(填“相同”或“不相同”);若装置D中装的是V2O5(催化剂)。通入SO2时,打开K通入适量O2的化学反应方程式为_________。
②SO2通入B中,溶液颜色褪去,则该反应的离子方程式为__________ 。
(2)某同学将足量的SO2通入一支装有氯化钡溶液的试管,未见沉淀生成,若向该试管中加入加量(填字母)_______,能产生白色沉淀。
A.氨水 B.稀盐酸 C.硝酸钾溶液 D.氯化钠溶液
(3)若由元素S和O组成-2价酸根离子X,X中S和O的质量比为2∶3;当Cl2的与含X的溶液完全反应后,得澄清溶液,取少量该溶液加入盐酸酸化的氯化钡溶液,有白色沉淀产生。写出Cl2与含X的溶液反应的离子方程式___________。
(4)某科研单位利用电化学原理用SO2来制备硫酸,装置如图,含有某种催化剂,电极为多孔的材料,能吸附气体,同时也能使气体与电解质溶液充分接触。通入SO2的电极为____极,其电极反应式为____;电池的总反应式_______。
三、原理综合题
18.燃料电池是一种具有应用前景的绿色电源。下图为燃料电池的结构示意图,电解质溶液为NaOH溶液,电极材料为疏松多孔的石墨棒。请回答下列问题:
(1)若该燃料电池为氢氧燃料电池。
①a极通入的物质为____________,电解质溶液中的OH-移向________极(填“负”或“正”)。
②写出此氢氧燃料电池工作时,负极的电极反应式:____________。
(2)若该燃料电池为甲烷燃料电池。已知电池的总反应为CH4+2O2+2OH-=+3H2O
①下列有关说法正确的是________(填字母代号)。
A.燃料电池将电能转变为化学能
B.负极的电极反应式为CH4+10OH-– 8e-=+7H2O
C.正极的电极反应式为O2+4H++4e-=2H2O
D.通入甲烷的电极发生还原反应
②当消耗甲烷11.2L(标准状况下)时,假设电池的能量转化效率为80%,则导线中转移的电子的物质的量为_______mol.
19.1913年,德国化学家哈伯实现了合成氨的工业化生产,被称作解救世界粮食危机的化学天才.现将lmolN2和3molH2投入1L的密闭容器,在一定条件下,利用如下反应模拟哈伯合成氨的工业化生产:N2(g)+3H2(g)2NH3(g) H<0.当改变某一外界条件(温度或压强)时,NH3的体积分数ψ(NH3)变化趋势如图所示.
回答下列问题:
(1)已知:①NH3(l)═NH3(g) H1,②N2(g)+3H2(g)2NH3(l) H2;则反应N2(g)+3H2(g) 2NH3(g)的 H=_____________(用含 H1、 H2的代数式表示);
(2)合成氨的平衡常数表达式为____________,平衡时,M点NH3的体积分数为10%,则N2的转化率为____________(保留两位有效数字)\;
(3)X轴上a点的数值比b点____________(填“大”或“小”)。上图中,Y轴表示____________(填“温度”或“压强”),判断的理由是____________;
(4)若将1molN2和3molH2分别投入起始容积为1L的密闭容器中,实验条件和平衡时的相关数据如表所示:
容器编号 实验条件 平衡时反应中的能量变化
Ⅰ 恒温恒容 放热Q1kJ
Ⅱ 恒温恒压 放热Q2kJ
Ⅲ 恒容绝热 放热Q3kJ
下列判断正确的是____________;
A.放出热量:Ql<Q2< Hl B.N2的转化率:Ⅰ>Ⅲ
C.平衡常数:Ⅱ>Ⅰ D.达平衡时氨气的体积分数:Ⅰ>Ⅱ
(5)常温下,向VmLamol/L的稀硫酸溶液中滴加等体积bmol/L的氨水,恰好使混合溶液呈中性,此时溶液中c()____________c()(填“>”、“<”或“=”) ;
(6)利用氨气设计一种环保燃料电池,一极通入氨气,另一极通入空气,电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,它在熔融状态下能传导O2-,写出负极的电极反应式____________。
第1页 共4页 ◎ 第2页 共4页
第1页 共4页 ◎ 第2页 共4页
参考答案:
1.B
【分析】根据电池的工作原理示意图,知道通氧气的电极2是正极,电极1是负极;
【详解】A.在燃料电池的负极上发生燃料失电子的氧化反应,在正极上氧气发生得电子的还原反应,所以电极2氧气为正极发生还原反应,故A正确;
B.原电池工作时,电解质中的阳离子向正极移动,即Na+向正极移动,故B错误;
C.原电池中,电流是从正极电极2流向负极电极1,则电子由电极1经外电路流向电极2,故C正确;
D.在燃料电池的负极上发生燃料氨气失电子的氧化反应,则碱性环境下电极1发生的电极反应为:2NH3+6OH--6e-=N2+6H2O,故D正确;
故选B。
2.D
【分析】由新型锌-空气电池装置可知,该反应的负极反应式为2Zn+4OH--4e-=2ZnO+2H2O;正极反应式为,总反应为2Zn+O2=2ZnO。
【详解】A.“FeCo-NSC”催化剂能降低正极反应的活化能,加快反应速率,A正确;
B.正极反应式为,B正确;
C.向负极Zn附近迁移,C正确;
D.原电池中,正极电势高于负极电势即左侧电极电势比右侧电极高,D错误;
故选D。
3.D
【分析】由题干信息可知,正面石墨薄片为正极,发生的电极反应为:O2+4e-+2H2O=4OH-,反面上的锌粉为负极,电极反应为:Zn-2e-+4OH-=,据此分析解题。
【详解】A.由分析可知,石墨为正极,电极反应为:O2+2e-+2H2O=4OH-,即石墨上发生还原反应,A正确;
B.由分析可知,石墨为正极,锌粉电极为负极,故电流从石墨经闹钟流向锌,B正确;
C.由分析可知,反应过程中NaCl仅为电解质,参与导电,并未参与反应,故NaCl不损耗,C正确;
D.该电池有质量小、柔韧性好的优点,但由于上述反应不可逆,故不可重复利用,D错误;
故答案为:D。
4.C
【分析】由图可知,放电时,M极为原电池的负极,碱性条件下锌失去电子发生氧化反应生成四羟基合锌离子,电极反应式为Zn—2e—+4OH—=Zn(OH),N电极为正极,酸性条件下二氧化铅在正极得到电子发生还原反应生成硫酸铅和水PbO2+2e—+SO+4H+=PbSO4+2H2O,充电时,与直流电源负极相连的M极为阴极,N电极为阳极。
【详解】A.由分析可知,放电时,M极为原电池的负极,故A错误;
B.由分析可知,放电时,M极为原电池的负极,N电极为正极,则阳离子钾离子从中间室移向右极室,故B错误;
C.由分析可知,充电时,N极为阳极,水分子作用下硫酸铅在阳极失去电子发生氧化反应生成二氧化铅、硫酸根离子和氢离子,电极反应式为,故C正确;
D.由分析可知,充电时,与直流电源负极相连的M极为阴极,N电极为阳极,当M极质量每增加32.5g,外电路中通过电子的物质的量为×2=1mol,故D错误;
故选C。
5.C
【分析】NO—空气燃料电池的工作原理如图所示,氧气发生还原反应,故a为正极、b为负极;
【详解】A.由分析可知,a电极为电池正极,A错误;
B.原电池中氢离子向正极移动,故电池工作时透过质子交换膜从左向右移动,B错误;
C.b电极上NO失去电子发生氧化反应生成硝酸,电极反应:,C正确;
D.没有标况,不能计算氧气的体积,D错误;
故选C。
6.C
【详解】A.由图中电子流动方向可知电极Y为负极,材料为Zn,电极X为正极,材料为,故A错误;
B.一段时间后,的浓度增大说明程a、b分别为阴、阳离子交换膜,故B错误;
C.根据总反应,锰化合价降低,则正极反应式为,故C正确;
D.的物质的量增大0.1m时,电路中转移0.2ml电子,故D错误。
综上所述,答案为C。
7.C
【分析】根据图示,电极通入SO2失电子生成,则电极为负极,电极反应为,电极为正极,酸性条件下,通入的氧气得电子生成水,发生的反应为,据此分析解答。
【详解】A.放电时,电子从负极流向正极,电极为负极,电极为正极,则该电池放电时电子从电极经过外电路流到电极,故A正确;
B.电极通入SO2,SO2在负极失电子生成,则电极反应为,故B正确;
C.酸性条件下,氧气得电子生成水,则电极附近发生的反应为,故C错误;
D.该电池的原理为二氧化硫与氧气的反应,即2SO2+O2+2H2O=2H2SO4,所以放电过程中消耗的和的体积比为,故D正确;
答案选C。
8.D
【详解】A.手机用锂电池,可充电,属于二次电池,故A不选;
B.电动汽车用电池,可充电,属于二次电池,故B不选;
C.铅酸蓄电池,可充电,属于二次电池,故C不选;
D.锌锰干电池不可充电,属于一次电池,故D选;
故选D。
9.A
【分析】根据电子流向可知,a为负极、b为正极;
【详解】A.原电池中阳离子向正极移动,则Ca2+、Mg2+透过离子交换膜Y移向b极,A错误;
B.负极中C6H12O6得到电子发生氧化反应生成二氧化碳,反应式为C6H12O6+6H2O-24e-=6CO2↑+24H+,B正确;
C.由B电极式可知,1molC6H12O6转化为CO2,则会有24mol氯离子迁移到负极区;钙离子、镁离子均带2个单位正电荷,根据电荷守恒可知,迁移到正极区的离子总数为12NA,C正确;
D.该装置为化学能转化为电能的装置,且得到软水,故可用于硬水软化,同时还可产生电能,D正确;
故选A。
10.C
【详解】该燃料电池的总反应为2CH3OH+3O2=4H2O+2CO2①
正极反应为O2+4H++4e-=2H2O②
①-②×3得:2CH3OH+2H2O-12e-=2CO2+12H+,即CH3OH+H2O-6e-=CO2+6H+。故C正确;
故选:C。
11.B
【详解】A.轮船水线以下的船壳上装一定数量的锌块利用的是牺牲阳极法来防腐蚀,是原电池原理,故A不选;
B.铝片不用特殊方法保护是因为铝被氧气氧化形成了一层致密的氧化物保护膜,与电化学原理无关,故B选;
C.纯锌与稀硫酸反应时,滴入少量硫酸铜溶液后形成锌铜原电池,从而速率加快,故C不选;
D.镀锌铁比镀锡铁耐用,是因为破损后锌活泼做负极,而铁做正极被保护起来,是牺牲阳极法,故D不选;
故选B。
12.D
【分析】原电池中较活泼的金属是负极,失去电子,发生氧化反应。电子经导线传递到正极,所以溶液中的阳离子向正极移动,正极得到电子,发生还原反应。
【详解】A.电极b的电极反应为Zn-2e-=Zn2+,电极a的电极反应为Cu2++2e-=Cu,所以一段时间后,a增加的质量小于b减少的质量,A错误;
B.由于b极上锌失电子为负极,盐桥中阴离子向b极移动,B错误;
C.Fe做负极,C做正极,外电路电子转移方向:a→b,C错误;
D.I-失去电子生成I2,淀粉溶液遇碘变蓝色,则b极附近溶液变蓝,若开始时增大FeCl3溶液浓度,反应速率加快,则b极附近溶液变蓝的速度加快,D正确;
故选D。
13.B
【详解】自发的氧化还原反应可以设计成原电池;根据2Fe3++Fe=3Fe2+可以判断,铁作负极发生氧化反应生成亚铁离子,比Fe活泼性弱的Cu、Ag或C棒作正极,电解质溶液中含有Fe3+在正极放电发生还原反应生成亚铁离子;锌做负极,锌会发生氧化反应生成锌离子,故B不符合题意;
故选B。
14.C
【分析】由电池总反应知,Ag 失电子作还原剂, MnO2得电子作氧化剂,因此 Ag 为电源负极, MnO2为电源正极,据此分析。
【详解】A.根据分析,负极是银,失电子变成氯化银,电极反应式为Ag+Cl--e-=AgCl,A错误;
B.原电池中,阳离子移向正极,则Na+不断向“水”电池的正极移动,B错误;
C.反应中,Mn元素化合价从MnO2中的+4价降低到Na2Mn5O10中的+3.6价,则每生成1molNa2Mn5O10转移电子,C正确;
D.AgCl 是单质银化合价升高后所对应的产物,为氧化产物,D错误;
故选C。
15.D
【详解】当A、B组成原电池时,电子流动方向A→B,则金属活泼性为A>B;当A、D组成原电池时,A为正极,则金属活泼性为D>A;B与E构成原电池时,电极反应式为:E2-+2e-→E,B-2e-→B2+,B失去电子,则金属活泼性为B>E,综上所述,金属活泼性为D>A>B>E,故答案为:D。
16.(1) B A
(2)铝
(3)B
(4)A
【分析】形成原电池的条件为:要有两个活性不同的电极;要有电解质溶液;要形成闭合的回路;要有自发的氧化还原反应发生,以此解题。
(1)
实验2中Zn为负极,电流由B流向A;
(2)
实验6中,金属Mg不与氢氧化钠溶液反应,铝可以和氢氧化钠溶液反应,故铝作负极;同时由图中可以发现,B电极是铝,故答案为:铝;
(3)
实验5有电流产生,说明发生了氧化还原反应,由图可知,电极A为金属电极,故应该是铜失去电子,从而说明金属铜的腐蚀是自发的,故答案为B;
(4)
A.金属活动顺序表中活泼性强的金属不一定作负极,还要看电解质溶液的成分,如实验6中,相对不活泼的铝作负极,A错误;
B.在原电池中失去电子的电极发生氧化反应,是负极,B正确;
C.由实验4可知,烧杯中没有电解质,则灵敏电流表指针不偏转,没有电流,所以烧杯中需要有电流才有可能形成原电池,C正确;
D.由实验2、5、6可知原电池中,浸入同一电解质溶液中的两个电极,是活泼性不同的两种金属(或其中一种非金属),这时灵敏电流表指针才会偏转,才会形成原电池,D正确;
故选A。
17.(1) 相同 2SO2+O22SO3 SO2+I2+2H2O=4H++2I-+SO
(2)AC
(3)Cl2+SO+H2O=SO+2Cl-+2H+
(4) 负 SO2 -2e-+2 H2O= SO+4H+ 2SO2+O2+2H2O=2H2SO4
【详解】(1)二氧化硫能和有色物质反应生成无色物质,所以二氧化硫有漂白性;氯气和水反应生成次氯酸,次氯酸具有强氧化性,能使有色物质褪色,所以若从左端分别通入SO2和Cl2,装置A中观察到的现象相同,都使品红褪色;若装置D中装的是V2O5(催化剂)。通入SO2时,打开K通入适量O2,它们会发生氧化还原反应产生SO3,该反应是可逆反应,所以反应的化学反应方程式为 2SO2+O22SO3;②SO2通入B的碘水中,二者会发生氧化还原反应而使溶液颜色褪去,则该反应的离子方程式为SO2+I2+2H2O=4H++2I-+SO;答案:相同
;2SO2+O22SO3;SO2+I2+2H2O=4H++2I-+SO;
(2)将足量的SO2通入一支装有氯化钡溶液的试管,未见沉淀生成,若向该试管中加入足量试剂仍然无法观察到沉淀产生,说明不发生反应。A.氨水加入后生成亚硫酸铵,亚硫酸根和钡离子生成沉淀,A正确;B.稀盐酸加入后不反应,B错误;C.稀硝酸溶液具有强氧化性,将二氧化硫氧化成硫酸根,与钡离子生成硫酸钡沉淀,C正确;D.氯化钙溶液和二氧化硫不反应,D错误;所以说法正确的是AC,答案:AC;
(3)若由元素S和O组成-2价酸根离子X,X中S和O的质量比为2:3,则二者的原子个数比是:1:3,该微粒是SO32-,当Cl2的与含X的溶液完全反应后,反应产生硫酸根离子积Cl-,得澄清溶液,取少量该溶液加入盐酸酸化的氯化钡溶液,有白色BaSO4沉淀产生。Cl2与含X的溶液反应的离子方程式是Cl2+SO+H2O=SO+2Cl-+2H+,答案:Cl2+SO+H2O=SO+2Cl-+2H+;
(4)利用电化学原理用SO2来制备硫酸,装置如图,含有某种催化剂,电极为多孔的材料,能吸附气体,同时也能使气体与电解质溶液充分接触。通入SO2失去电子,发生氧化反应,所以通入SO2的电极为负极,其电极反应式为SO2 -2e-+2 H2O= SO+4H+,通入空气的电极为正极,氧气获得电子,与溶液的氢离子结合形成水,所以电池的总反应式是2SO2+O2+2H2O=2H2SO4。答案:负;SO2 -2e-+2 H2O= SO+4H+;2SO2+O2+2H2O=2H2SO4。
18. 氢气(或H2) 负 H2+ 2OH-– 2e-= 2H2O B 3.2
【分析】原电池中,电子由负极经外电路流向正极,根据图示中电子的流向可知,左侧电极为负极,右侧电极为正极,根据燃料电池特点,通入燃料的一极为负极,通入氧气的一极为正极,则该氢氧燃料电池,由a通入的为燃料,由b通入的为氧气,据此分析解答。
【详解】(1)①燃料电池中,负极上失电子发生氧化反应,通入燃料氢气的电极是负极,据分析可知a电极是负极,故a极通入的物质为氢气;原电池中阴离子移向负极,故OH-移向负极;
②电解质溶液为NaOH溶液,为碱性环境,故此氢氧燃料电池工作时,负极的电极反应式:H2– 2e- + 2OH-= 2H2O;
(2)①A.燃料电池能将化学能转变为电能,故A错误;
B.电解质溶液为NaOH溶液,为碱性环境,故负极的电极反应式为CH4+10OH--8e-=CO32-+7H2O,故B正确;
C.碱性环境中正极的电极反应式应为:为O2+2H2O +4e-=4OH-,故C错误;
D.通入甲烷的电极失电子发生氧化反应,故D错误;
故答案选B。
②据电池的总反应CH4+2O2+2OH-=CO32-+3H2O可知:消耗甲烷22.4L(标准状况下)时,假设电池的能量转化效率为100%,则导线中转移的电子的物质的量为8mol,则当消耗甲烷11.2L(标准状况下)时,假设电池的能量转化效率为100%,则导线中转移的电子的物质的量4mol,故电池的能量转化效率为80%时,导线中转移的电子的物质的量为4mol×0.8 = 3.2mol。
【点睛】本题考查了燃料电池,要注意的是:虽然燃料相同,但电解质溶液不同时,电极反应式就不同,如氢氧燃料电池,在酸性介质和碱性介质中的电极反应式就不同。在计算转移电子的物质的量时注意电池的能量转化效率。
19.(1)
(2) 18%
(3) 小 温度 随Y值增大,减小,平衡向逆反应方向移动,故Y为温度
(4)AB
(5)>
(6)
【详解】(1)已知:①,②,根据盖斯定律,①×2+②可得:,故;
(2)反应的平衡常数表达式K=,设转化的氮气为xmol,则:
所以=10%,解得x=mol,故氮气转化率为×100%=18%;
(3)随Y值增大,减小,平衡向逆反应方向移动,正反应为体积减小的放热反应,故Y为温度,则X为压强,增大压强平衡正向移动,增大,a点的数值比b点小,故答案为小;温度;随Y值增大,φ(NH3)减小,平衡向逆反应方向移动,故Y为温度;
(4)A.I为恒温恒容,随反应进行压强减小,Ⅱ为恒温恒压,Ⅱ等效为在I的基础上增大压强,平衡正向移动,Ⅱ中反应物转化率大于Ⅰ,放出热量:,故A符合题意;
B.Ⅲ为恒容绝热,随反应进行温度升高,I为恒温恒容,Ⅲ等效为在I的基础上升高温度,平衡逆向移动,的转化率:I>III,故B符合题意;
C.平衡常数只受温度影响,温度相同,平衡常数相同,则平衡常数:II=I,故C不符合题意;
D.Ⅱ等效为在I的基础上增大压强,平衡正向移动,则达平衡时氨气的体积分数:I<II,故D不符合题意;
故答案为AB;
(5)溶液呈中性,则,根据电荷守恒:,则c()>c();
(6)原电池负极发生氧化反应,氨气在负极失去电子,与电解质氧化传导的结合生成氮气与水,负极电极反应式为:。
【点睛】本题的难点为(6)中电极方程式的书写,要注意电解质中的导电微粒为。
答案第1页,共2页
答案第1页,共2页

延伸阅读:

标签:

上一篇:3.3酸碱中和与盐类水解同步练习(含解析)2022-2023上学期高二化学沪科版(2020)选择性必修1

下一篇:5.2 氮及其化合物 同步练习题(含解析) 2022-2023高一下学期化学人教版(2019)必修第二册